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SUMMARY

1. We have undertaken a theoretical analysis of the steps contributing to the
phototransduction cascade in vertebrate photoreceptors. We have explicitly
considered only the activation steps, i.e. we have not dealt with the inactivation
reactions.

2. From the theoretical analysis we conclude that a single photoisomerization
leads to activation of the phosphodiesterase (PDE) with a time course which
approximates a delayed ramp; the delay is contributed by several short first-order
delay stages.

3. We derive a method for extracting the time course of PDE activation from the
measured electrical response, and we apply this method to recordings of the
photoresponse from salamander rods. The results confirm the prediction that the
time course of PDE activation is a delayed ramp, with slope proportional to light
intensity; the initial delay is about 10-20 ms.

4. We derive approximate analytical solutions for the electrical response of the
photoreceptor to light, both for bright flashes (isotropic conditions) and for single
photons (involving longitudinal diffusion of cyclic GMP in the outer segment). The
response to a brief flash is predicted to follow a delayed Gaussian function of time,
i.e. after an initial short delay the response should begin rising in proportion to t2.
Further, the response-intensity relation is predicted to obey an exponential
saturation.

5. These predictions are compared with experiment, and it is shown that the rising
phase of the flash response is accurately described over a very wide range of
intensities. We conclude that the model provides a comprehensive description of the
activation steps of phototransduction at a molecular level.

INTROD-UCTION

The molecular basis of phototransduction has been studied intensively over the
last decade. The steps involved in initiation of the response (i.e. in activation) are
now well understood at a molecular level, but in contrast considerable doubt still
surrounds the details of the mechanisms involved in termination of the state of
activation (i.e. in inactivation). In this paper we show that there is now sufficient
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quantitative information about each of the processes involved in activation to enable
us to develop a formal quantitative description.
Our goal has been to provide a biophysical description of the rising phase of the

photoresponse, applicable over an extremely wide range of intensities, from the level
of single photoisomerizations upwards. To achieve this goal we have combined
current knowledge of each of the molecular steps involved in initiating photo-
transduction. Our model (or set of equations) is explicit in molecular terms, and
depicts the activation steps in phototransduction as a series of relatively simple
physical and biochemical processes, for which most of the parameters are basic
physical quantities.
The concepts presented here represent a synthesis of ideas originating from many

groups. We briefly summarize these ideas in the next section, but for a fuller
treatment of the extensive literature on phototransduction we refer the reader to the
reviews by Chabre (1985), Hofmann (1986), Pugh & Cobbs (1986), Stryer (1986),
Liebman, Parker & Dratz (1987), Owen (1987), Yau & Baylor (1989), McNaughton
(1990), Pugh & Lamb (1990) and in Hargrave, Hofmann & Kaupp (1992).
Our description of phototransduction differs from previous models in providing a

quantitative description of each of the molecular steps involved in activation. In all
theoretical treatments since the analysis of Baylor, Hodgkin & Lamb (1974), it has
been assumed that a chain of reactions is involved in linking the absorption of a
photon to the change in concentration of cytoplasmic messenger. Although Cobbs &
Pugh (1987) and Forti, Menini, Rispoli & Torre (1989) treated the chain from
physical principles, most previous models have not analysed the molecular details
involved, but have instead described the chain in terms of an arbitrary mathematical
function (e.g. Baylor et al. 1974; Sneyd & Tranchina, 1989). In contrast, the present
model analyses the reactions of the cascade at a molecular level, taking account of
diffusion both at the disc surface and in the cytoplasm.

BACKGROUND

In order to provide a background to the analysis that we are about to undertake,
we now briefly review the protein reactions involved in the transduction cascade and
also the electrophysiology of the rod outer segment.

Protein reactions of the transduction cascade
The biochemical reactions mediating the PDE cascade of transduction at the disc

surface are indicated schematically in Fig. 1A. The three panels (Steps 1-3) represent
activation respectively of rhodopsin (Rh*), of the G-protein (GQ*.GTP) and of the
phosphodiesterase (PDE*).

Physical properties of the proteins
The concentration (density per unit area of disc membrane) and lateral diffusion

coefficient of each of the three principal proteins of phototransduction are listed in
Table 1, along with certain other parameter values and important symbol definitions.

Cytoplasmic reactions
Figure lB summarizes the reactions occurring in the cytoplasm. The lower part

represents the reactions of cyclic GMP: its synthesis, hydrolysis and binding to buffer
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Fig. 1. Schematic of the reactions underlying phototransduction; for details see text and
Pugh & Lamb (1990). Reactions mediating excitation are shown by filled arrows;
reactions involved in recovery are shown by open arrows. A, protein reactions at the disc
membrane; activated forms are in small boxes. Steps 1-3 show the reactions involving:
rhodopsin (Rh*), the G-protein (G.* * GTP) and the phosphodiesterase (PDE*). B,
cytoplasmic reactions of the diffusible messengers. Steps 4-6 show: the generation,
buffering and hydrolysis of cyclic GMP (cG), channel activity and ion permeation, and
calcium fluxes and action.
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sites (Step 4), and its interaction with the ion channels in the plasma membrane (Step
5). The upper right hand section (Step 6) indicates the role of cytoplasmic calcium
concentration, i.e. it shows the transmembrane Ca21 fluxes and the hypothesized
action of Ca2+ on guanylate cyclase via a modulatory protein; these reactions are
considered only briefly in this paper.

TABLE 1. Important symbols of the model, and estimated parameter values for amphibian rods
(see Appendix C)

Value Units

Protein concentr
2500

- 167
07

- 12
15
0-8

Definition
Variables

Number of isomerizations at t = 0
Number of activated rhodopsins, G-proteins,
and PDE subunits

,UM Free concentration of cyclic GMP
s-i PDE hydrolytic rate constant, and its light-

induced increment
Normalized current and response

rations and lateral diffusion coefficients
/Am-2 Concentration (or area density) of G and
m-2 J PDE in disc membrane.

ftm2 s-l
tm2 s- Lateral diffusion coefficients of Rh, Ga#Y5 Ga

2 -1uam s- and PDE
,um2 s-1 J

Other symbols
s-i Rate of activation of G* and PDE* per Rh*:

eqns (A1)-(A2) and (AlO)-(A15)
0 9 Coupling gain from G* to PDE*: eqns (3.2),

(A8), (A14)
15 ms Effective delay time: eqn (3.4)
6 x 10-6 s-1 Hydrolytic rate constant per PDE* subunit:

eqn (4.4) or (C1)
2-3 Co-operativity of channel activation: eqn (5.1)

s Characteristic time constant of transduction:
eqn (6.9)

~7 jim2 s-i Longitudinal diffusion coefficient of cyclic
GMP in cytoplasm: eqns (4.5), (C4)

Electrophysiology
Families of electrical responses to brief flashes of increasing intensity exhibit a

characteristic form of rising phase (see Fig. 7A). At early times the response is linear
with intensity and has a power-law time dependence (Penn & Hagins, 1972; Baylor
et al. 1974; Baylor, Lamb & Yau, 1979). Over a wide range of intensities the earliest
phase of the response r(t) to a brief flash (and the whole of the response to a dim flash)
is well-described by

r(t) = ki I tN-1 e-t/T (1)
where I is the light intensity and k1 is a constant (in appropriate units). For rods at
room temperature the exponent is N- 1 % 3 and the time constant is T- 200-800
ms.
Although the linear intensity dependence of eqn (1) provides a good description of

Symbol

4Ji
Rh*(t), G*(t), PDE*(t)

cG(t)
4l(t), Afl(t)
F(t), R(t)

CG
CPDE
DRh
DG
DGa
DPDE

VRG VRP

CGP

teff

flsub

n
T0

DX

722

) by guest on July 17, 2009jp.physoc.orgDownloaded from J Physiol (

http://jp.physoc.org/


ACTIVATIOA STEPS IN PHOTOTRANSDUCTION

the amplitude when the response is small, saturation sets in with larger responses.
The form of the response--intensity relation at fixed times up to about 1 s has been
shown to be fitted by the equation

R(t) = 1-exp[-Ik2(t)], (2)

where R(t) is the normalized response r(t)/rmax, and k2(t) is a constant at any
particular time (Lamb, McNaughton & Yau, 1981). Possible bases for the form of this
equation have been given by Baylor et al. (1974) and Lamb et al. (1981). Our analysis
provides an alternative description to both these equations.

THEORY

In this section we present a theoretical analysis of the activation steps in the
scheme outlined in Fig. 1. We ignore inactivation reactions, and we restrict
consideration to intensities at which the protein reactions are linear with the number
of photoisomerizations. It is possible to show that for the first 0 5 s of the response
to flashes of up to ca 105 isomerizations these restrictions have little effect. For
simplicity, we consider only the responses to brief flashes. We denote the quantities
of the activated proteins by the italic forms Rh*(t), G*(t) and PDE*(t).

Step 1: Activation of rhodopsin
Equation for Rh*(t)

It is now clear that the active form of rhodopsin, Rh*, can be identified with
metarhodopsin II in a form prior to its phosphorylation by rhodopsin kinase and
capping by the 48 kDa protein (reviewed in Chabre, 1985; Hofmann, 1986; see Fig.
1A). Spectrophotometric studies have shown that metarhodopsin II is formed very
rapidly after photoisomerization. In amphibian rods at 22 °C the reaction has a time
constant TR of 1-4 ms (rate constant 740 s-5; Baumann, 1978). Hence, for a flash
isomerizing (D rhodopsin molecules at t = 0, the mean number Rh*(t) of activated
rhodopsin molecules will be

Rh*(t) = D[I1-exp (-t/TR)]. (1.1)

For the purposes of our subsequent analysis it is convenient to adopt the
nomenclature step(t) and ramp(t) to denote the step and ramp functions, defined as
zero for t < 0 and as unity and t respectively for t > 0. It is also helpful to employ the
short-hand notation '*delay(T1l,.. Tn,t)' to denote convolution with n first-order
delay stages having time constants 1,l Ton With this terminology eqn (1.1) may be
written as

Rh*(t) = 4D step(t) * delay(R, t). (1.2)

Step 2: Activation of the G-protein by rhodopsin
Biochemical mechanism of catalysis by Rh*

All the available evidence is consistent with the idea (put forward by Liebman &
Pugh, 1979) that activation of the transduction cascade is brought about by the
random lateral diffusion of Rh* and its target molecule, now established as the G-
protein.
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Upon contact between Rh* and a molecule of G-protein, a series of 'microsteps'
is initiated, indicated schematically as Step 2 of Fig. 1A. This series of reactions leads
ultimately to generation of the activated G* (= Ga* * GTP) as well as to separation of
the G-protein from Rh*, so that the single molecule of Rh* is able to undergo the
cycle repetitively. The sequence of microsteps (in the forward direction) consists of
the following:
2A: Rh* binds to GGDP, forming Rh*-G.GDP,
2B: GDP is released, leaving Rh*-G (without nucleotide),
2C: GTP is bound, forming Rh*-G GTP,
2D: Rh* separates from G GTP,
2E: G GTP separates into its subunits Ga* GTP and GA,,.

The evidence supporting this scheme has been reviewed by Kuhn (1984), Chabre
(1985), Hofmann (1986), Stryer (1986) and Hargrave et al. (1991).

Diffusional contact between Rh* and the G-protein
Before the series of microsteps 2A-2E can occur, the Rh* molecule must make

contact with any one of the large number of inactive G -GDP molecules on the disc
membrane. Since the GDP form of the holo-G-protein is almost exclusively
membrane-bound, excitation cannot spread from Rh* to G-protein via the
cytoplasm, and instead such contact must occur by means of mutual lateral diffusion
of Rh* (which is an integral membrane protein) and the G-protein (which is a
peripheral protein), within or at the surface of the disc membrane (see Liebman et al.
1987).

In Appendix A we consider such diffusional contact theoretically and we show
that, whether or not the reaction proceeds at the diffusion limit, the rate VRG of
activation of G GTP by a single Rh* may (to a good approximation) be taken to be
constant, over times from milliseconds to hundreds of milliseconds after isomeriza-
tion.

Equation for the quantity of activated G-protein
Thus, in a region of outer segment exposed to (F photoisomerizations at t = 0, the

quantity of the activated form Ga* GTP is (in the absence of inactivation reactions)
given by eqn (A4) as

G*(t) = 4) vRGramp(t) * delay(rR, T2C T2E, t), (2.1)

where the dominant time constants of the series of microsteps are assumed to be -T2C
and T2E, associated with Steps 2C and 2E (p. 751).

In eqn (A2) of Appendix A we show that the diffusion limit on the rate VRG is given
by

3RG S 15(DRh+DG) CG, (2.2)
where DRh and DG (Itm2 s-1) represent the lateral diffusion coefficients of Rh* and
G * GDP, and where CG (molecules Itm-2) represents the concentration of G -GDP in
the membrane. Our estimates of these parameters (see Table 1 and Appendix C) are
DRh +DG s1 9/Lm2 -1 and CG = 2500 molecules tm-2, giving VRG S 7000 G* 51 per
Rh*.
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Step 3: Activation ofPDE by Ga* OTP
Biochemical mechanism of activation of the PDE
The mechanisms believed to be involved in activation of the PDE are indicated

schematically in Fig. 1, Step 3. The active subunit of the G-protein, G.* - GTP, binds
stoichiometrically to a y-subunit of the PDE, thereby removing an inhibitory
constraint imposed by the y-subunit. The earlier evidence in support of this
mechanism of activation has been reviewed by Stryer (1986). More recent evidence
has shown that the PDE in fact possesses two y-subunits, and that the binding oftwo
Ga* GTP's is necessary for full activation; the binding of a single Ga,,* *GTP activates
only a fraction of the total enzymatic activity (e.g. Deterre, Bigay, Forquet, Robert
& Chabre, 1988; Whalen, Bitensky & Takemoto, 1990). Although there have been
claims that the y-subunit separates from the remainder of the PDE once the
Ga* *GTP has bound to it, an alternative view supported by recent evidence is that
such separation does not occur (e.g. Gray-Keller, Biernbaum & Bownds, 1990;
Wensel & Stryer, 1990). Instead each y-subunit may remain associated with the
PDE.., but with its inhibitory effect somehow relieved. In any event the actual
physical disposition of the y-subunit following the binding of G.* . GTP does not
affect the conclusions we draw concerning the time course of PDE activation.

Effect of two y-subunits
There is some dispute about the extent of activation elicited by the binding of each

Ga* *GTP to the PDE (Deterre et al. 1988; Whalen et al. 1990). However, it appears
that the binding is very tight, and there is no convincing evidence that the G.* *GTP
separates from the y-subunit of the PDE, even after extraction of the protein from
the rod. In the case of tight binding it is possible to assume that on average half the
Ga* *GTP is bound to each of the sites. Accordingly, the simplest way to take account
of the effect of the two y-subunits is to assume that the binding of each G.* *GTP
produces an effect corresponding to the average activity of the two sites. Thus it is
most appropriate to define PDE*(t) as the quantity of activated PDE catalytic
subunits, with each subunit having a hydrolytic activity half that of the fully
activated multimer (i.e. I 1cat/Km see p. 727).

Diffusional contact between G,* - GTP and PDE
Liebman et al. (1987) and Uhl, Wagner & Ryba (1990) have each summarized a

number of properties of the activation of PDE by G,* . GTP which lead them to
conclude that contact between the proteins occurs not via cytoplasmic diffusion as
proposed by Chabre (1985), but instead as a result of diffusion at the disc membrane
surface, i.e. that G,* * GTP does not move into the cytoplasm during the normal light
response.
As a starting point we accept these arguments, and in Appendix A we investigate

the extent of spatial spread of activated G-protein. We show that lateral diffusion at
the disc surface occurs so rapidly that only a small proportion of G.* *GTP remains
within a region where its concentration exceeds the native concentration of
activatable PDE subunits. This means that the PDE concentration is affected over
a substantial area, so that depletion of the inactive PDE will not be particularly
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localized to the point of photoisomerization. Thus the results in Appendix A indicate
that lateral diffusion at the disc surface does not provide a significant limit to the rate
of reaction between G.* GTP and PDE,, and they indicate that the reaction will
proceed approximately according to the Law of Mass Action.

Solution for PDE*(t)
The analysis shows that the quantity of activated PDE* subunits may be

expressed simply as a scaled (and slightly delayed) function of the quantity of
Ga* GTP. Hence, from eqn (A 17), we obtain

where PDE*(t) = (D vRpramp(t) * delay(RIT2C, T2E' rPlrTP2 TP3, t), (3.1)
VRP = PVG CGP (3.2)

is the rate of activation of PDE* subunits by a single molecule of Rh*, and the
parameter CGP is referred to as the coupling gain for the activation of PDE by the G-
protein. In Appendix A we show that, for the parameters of the amphibian rod outer
segment, the diffusion limit on CGP is quite close to unity, so that vRP 1% RG'
The three additional delay stages represent the time rp1 for first contact between

a single Ga* *GTP and a PDE, the time constant TP2 of the reaction of G,* *GTP with
PDE,, and the time constant rp3 of removal of inhibition of the PDE once a
Ga* * GTP has bound to a PDEy. In Appendix A we show that the first contact time
,r1 should be given approximately by {3 (DGa+DPDE)CPDE}-, which yields a value
of ca 1 ms; see eqn (A16). We assume that the latter two delays, TP2 and TP3, are first-
order, and that they are short.
The conclusion that diffusion at the surface of the disc membrane does not

significantly hinder the rate of reaction has the implication that an aqueous path for
diffusion would not appreciably increase the rate of reaction. Even if Ga* *GTP went
into aqueous solution rapidly (and there is no evidence that it does so) and rapidly
reached its target, the limiting value for the reaction rate could only increase by a
small amount. So, although we cannot rule out the possibility of aqueous diffusion
in this step, the analysis in Appendix A shows that there is no need to invoke such
a mechanism, and that it would in any case not alter our equation for the activation
of PDE.

Delayed ramp approximation
Equation (3.1) represents the 'output' of the PDE cascade of reactions in response

to a brief flash of light, ignoring inactivation reactions and any competition for
substrate which may occur at very high intensities. Since the six individual delay
stages (TR, 72C, 12E, Tp1, TP2 and TP3), which together create a composite low-pass
filtering effect, are each likely to be small with respect to the time-scale of our interest
in the electrical response, it will be reasonable to approximate the term delay(...) in
eqn (3.1) as a pure time delay. With this substitution eqn (3.1) reduces to the simple
form of a 'delayed ramp'

PDE*(t) DDvRPramp(t-teff), (3.3)
where a limit on the effective delay time teff is given by

(3.4)eff T±+T2C +T2E +TP1+TP2 +TP3.
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It must be stressed that eqn (3.3) is only an approximation, and that it is unlikely
to be accurate at short times, i.e. it will be most accurate for t >> teff.
Of the six time constants in eqn (3.4), we have firm information about only two,

the time constant of metarhodopsin II formation, TR ~ 1-5 ms, and the time to first
contact between a G GTP and a PDE, T1P 1 ms. For comparison, Cobbs & Pugh
(1987), in their recordings of the earliest rising phase of the electrical response to very
intense flashes (D > 108), observed an irreducible total delay of about 7 ms before the
onset of the response, which they described in terms offour first-order stages with time
constants of about 2 ms.

Form of the solutions for the protein reactions
The solutions for the photon-induced change in quantity of the activated proteins

Rh*, G* GTP and PDE*, given by eqns (1.2), (2.1) and (3.1) or (3.3), are illustrated
in Fig. 2.

U,~~~~~~~G
7 PDE*

C.,/

0
E

0

0.

Rh*
E
z

teff Time

Fig. 2. Predicted time course for the activated forms of rhodopsin, G-protein and PDE in
response to (D photoisomerizations. The curves represent the concentrations Rh*(t), G*(t)
and PDE*(t) predicted by eqns (1.2), (2.1), (3.1) and (3.3). After an initial delay: Rh*(t)
approximates a steady value of D, G*(t) rises with a slope of D PRG, and PDE*(t) rises with
a slightly smaller slope of D IJRP; PDE*(t) may be approximated as a ramp starting at teff.

Step 4: Cyclic GMP concentration
Hydrolytic activity induced by activation of PDE*
We shall denote the free cytoplasmic concentration of cyclic GMP as cG(x,t),

abbreviated simply as cG. Since the resting dark concentration of approximately
4/M (see below) is much smaller than the Michaelis constant Km of the hydrolytic site
on the PDE (Km > 40/tM), the rate of hydrolysis of cyclic GMP by the activated PDE
will proceed as a first-order reaction, with

Rate of hydrolysis = PDE*(t) [2kat/KKm] cG, (4.1)

(in units of molecules of cyclic GMP s-'). The term in square brackets represents the
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hydrolytic activity per activated subunit of enzyme (s-' /1M-1), where kcat (s-1) is the
hydrolytic velocity of the fully-activated PDE* (i.e. per mole of the holo-enzyme) at
a saturating concentration of cyclic GMP. Note that this terminology refers the
rate of hydrolysis to the number of activated subunits, rather than molecules, of PDE
(see p. 725).
The rate of hydrolysis in the isotropic case of eqn (4.1) may be converted to a rate

of change of total cyclic GMP concentration (averaged over the whole outer segment)
by dividing by the cytoplasmic volume VYt. and Avogadro's number NAV. This value
may in turn be converted to the rate of change of free cyclic GMP concentration by
further dividing by the buffering power BP of the cytoplasm for cyclic GMP; in
Appendix C we conclude that the buffering power is relatively small, with BP % 2.
Hence the hydrolysis by PDE in eqn (4.1) corresponds to a rate of change of cG,
averaged over the outer segment, of

dcG/dt _ [PDE*()2at/Km]G (4.2)

Photon-induced increase in activity
The term in square brackets in eqn (4.2) represents A/3(t), the light-induced

increment in effective rate constant 4(t) of hydrolysis. (This definition of the rate
constant /(t) differs by the factor BP from that of Hodgkin & Nunn, 1988, in that
it explicitly includes allowance for the buffering power for cyclic GMP). From eqn
(4.2), A/3(t) may be written as

A/3(t) = PDE*(t)/?sub, (4.3)

where /3sub, defined as

18sub= catNKBP (4.4)

is the hydrolytic rate constant per activated subunit of PDE.

Differential equation for cG(x, t)
From the previous analyses of Lamb et al. (1981), Cobbs & Pugh (1987) and

Hodgkin & Nunn (1988), the differential equation applicable to the generation,
removal, binding and longitudinal diffusion of cyclic GMP can be written as the one-
dimensional diffusion equation

acG/at = aC-/3cG +DxD2cG/IX2. (4.5)

Here a is the effective cyclase rate and /3 is the effective PDE rate constant, and a,
/ and cG are each functions of longitudinal position x, as well as of t. Dx is the
effective longitudinal diffusion coefficient for the movement of cyclic GMP in the
outer segment cytoplasm; see Appendix C. In isotropic conditions, where longitudinal
diffusion can be ignored, this equation reduces to

dcG/dt = oc-/3cG.
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We assume that, except at points of photoisomerization, the hydrolysis rate
' constant' ,8 is at all times constant throughout the outer segment, at its dark resting
level fldark, i.e. that

/3(x, t) = f8dark (except at points of isomerization). (4.7)

At each point of isomerization the number of activated PDE* subunits is obtained
from eqn (3.1) or (3.3), and the increase in hydrolytic activity is obtained from eqn
(4.3).
The cyclase rate x is known to depend strongly on Ca2+ (Hodgkin & Nunn, 1988;

Koch & Stryer, 1988). Over the rising phase of the response, however, we may simply
approximate a as a constant, on the assumption that Ca2+ will change very little at
early times; for the validity of this assumption see p. 733, and Cobbs & Pugh (1987).
Thus, for flashes presented from darkness, we have

a adark = fidark CGdark. (4.8)

Pugh & Lamb (1990) review the evidence indicating that in the dark resting state the
free and bound concentrations of cyclic GMP in darkness are CGdark ~4 aim and
cGbnd 60 /tM.

Step 5: Channel activity and outer segment current
Channel activity
The action of cyclic GMP in opening ion channels in the plasma membrane has

been reviewed by Owen (1987), Yau & Baylor (1989) and Pugh & Lamb (1990). The
probability popen of a channel being open may be described by

Popen/Pmax -±(cG/Kd)n (5.1)

where Popen and cG are functions of x and t. The apparent dissociation constant is
Kd 17-30 /aM, and the co-operativity index is n = 2-3 (Fesenko, Kolesnikov &
Lyubarsky, 1985; see Yau & Baylor, 1989). The maximum open probability Pmax has
been reported to range from 0-1 to 0 45 with a mean of 0-3 (Matthews & Watanabe,
1988), so that even at a saturating concentration of cyclic GMP the channels are open
for only a finite fraction of the time.

It has been shown that the reaction of cyclic GMP with the channels occurs within
milliseconds (Cobbs & Pugh, 1987; Karpen , Zimmerman, Stryer & Baylor, 1988);
see also review by Owen (1987) and the single-channel burst duration measurements
of Matthews & Watanabe (1988). Accordingly, for our present purposes, we shall
assume that eqn (5.1) applies instantaneously. However, in the future, to deal with
the onset phase of responses to extremely bright flashes it is likely to be necessary to
include explicit consideration of channel closure kinetics.

Since the concentration of cyclic GMP does not normally exceed its resting dark
level of cGdark 14 tUM, and as Kd ~ 17-30 ftM, we have cG << Kd, so that under most
conditions

Popen/Pmax (cG/Kd)n. (5.2)
24-2
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Outer segment current
In order to determine the current flowing into the outer segment we shall assume

that the current-voltage relation of the light-sensitive conductance is instantaneous
(reviewed in Owen, 1987; Yau & Baylor, 1989), and that the membrane voltage V is
uniform throughout the outer segment. We denote the current density through the
light-sensitive channels as J(x,t) and write

J(x t) Popen(x, t) ma(V) (5 3)
Pmax

where Jmax(V) is the maximum current density through the light-sensitive
conductance at very high concentrations of cyclic GMP (ca -5 pA gm-2; Yau &
Baylor, 1989; Cameron & Pugh, 1990).
Over the whole outer segment, of length L and circumference c, the current i(t)

flowing through the light-sensitive channels will be

t(t) = J(x, t) c dx. (5.4)

Dark current and photocurrent
In order to avoid the complication of the cell's capacitive time constant we shall

consider the voltage-clamped cell, with dV/dt = 0. Furthermore, since we have
assumed that changes in CaF+ can be ignored during the early part of the response,
it will also be permissible to ignore any contribution from the Na+-Ca2+ exchange
current; see Cobbs & Pugh (1987).

Using these simplifications we can substitute eqns (5.2) and (5.3) into eqn (5.4) to
obtain idark, the current in darkness through the light-sensitive channels, as

idark - AsJmax(Vdark) (CGdark/Kd) , (5.5)

where As is the membrane surface area. Here we have implicitly assumed that spatial
variations in cGdark may be ignored.
We now introduce two parameters describing the electrical response: the

normalized circulating current F(t), and its complement, the normalized photo-
current R(t), defined by

F(t) = . I(t)= 1-R(t). (5.6)
tdark

Hence, for the approximation given in eqn (5.2), and under voltage-clamped
conditions and ignoring changes in exchange current, we obtain the normalized
photoresponse as

R(t) 1/IL f{1 - (cG(x, t)/CGdark)n} dx. (5.7)

In the case that cG(x,t) is uniform along the outer segment (i.e. independent of x), eqn
(5.7) reduces to
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This represents an extension of eqn (5.2) which is applicable when the fractional
circulating current is identical with the fraction of open channels (relative to that in
darkness).

Channel closure time. These equations do not allow for the short time taken for
channels to close when the cyclic GMP concentration drops (see above). For
calculating the response at very early times it will be necessary to convolve the right-
hand side of eqn (5.7) or (5.8) with an appropriate short delay function.

Analytical solutions of the equations
In order to obtain the solution R(t) we need first to solve eqn (4.5) or, under

isotropic conditions, eqn (4.6). The light-induced increase in rate constant Afi(t)
required in those equations may be obtained from eqn (4.3). The cyclase rate a (and
all the remaining parameters in the equations) may be taken to be constant at
suitably early times in the light response. Initially we treat the isotropic case of
bright flashes, where longitudinal gradients in concentration may be ignored. In
Appendix B we examine the more difficult case of the single-photon response, where
longitudinal diffusion must be analysed.

Isotropic case: bright flash response
For simplicity we shall treat the case in which the intensity is uniform along the

outer segment, as occurs with transverse illumination. It is possible to show that
longitudinal gradients of cyclic GMP will be negligible at intensities greater than
D t 100 isomerizations in amphibian rods, i.e. they are negligible for all saturating
flashes. In the absence of longitudinal gradients the differential equation for free
cyclic GMP concentration is given by eqn (4.6). This equation may be rewritten, with
the term /, expanded into the form /l(t) = fldark + A/3(t) and with a = adark' as

dcG(t)/dt = [CXdark - /3dark cG(t)]- A(t) cG(t). (6.1)
We wish to solve eqn (6.1) in response to a time-dependent A,(t). In this equation

the term L4dark -tdark cG(t) is initially zero (see eqn (4.8)), and we shall determine the
solution under conditions where the term remains negligible; later (p. 734) we
comment on the range of validity of this approximation. Equation (6.1) thus reduces
to the simple form

dcG/dt =-Af(t) cG, (6.2)
which has the solution

cG(t)/cGdark = exp [-fA(t') dt'] (6.3)

where t' is a dummy variable. Substitution of eqn (6.3) into eqn (5.8) gives the bright
flash response as

R(t) = 1-exp [-nfAl(t') dt']. (6.4)

Substitution of A/3(t). The increment in PDE rate constant Af3(t) is directly pro-
portional to the number of activated PDE subunits PDE*(t), which in turn is
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directly proportional to the number of isomerizations (F delivered to the outer
segment at t = 0; see eqns (4.3) and (3.1). Thus A/3(t) may be written as

Afl(t) = (D PDE*O(t)J#subI (6.5)
where PDE*,(t) is the number of activated PDE subunits per isomerization (i.e.
PDE*(t)/I(). Substitution of eqn (6.5) into eqn (6.4) then yields the bright flash
response as

R(t) = 1-exp (-DF [nisub f PDE*O(t') dt/]) (6.6)

This equation predicts that, irrespective of the time course of PDE*(t) or the
values of n or /3subI the response-intensity relation at fixed times during the rising
phase of the response should be of the exponential form 1- exp [-I k2(t)] given in eqn
(2), on p. 723. At any fixed time, k2(t) is a constant given by the term in square
brackets in eqn (6.6). The prediction of this exponential form follows directly from
the nature of the reactions in the cytoplasm, without the need to postulate (Lamb
et al. 1981) that even at early times in the response each isomerization blocks all the
channels over a restricted length of outer segment.

Substitution ofPDE*¢(t). The time course of increase in PDE* subunits in response
to a flash at t = 0 is given by eqn (3.1). Except at very early times this function rises
as a 'delayed ramp', given by eqn (3.3), so that eqn (6.5) may be written as

A/?(t) = (D VRPAub ramp(t- teff ). (6.7)

Substitution of this expression into eqn (6.4) yields the normalized response to
saturating flashes as

R(t) = 1-exp{-'(1[VRPASlubn] (t tetf)2}, t > teff. (6.8)

This equation indicates that, within the validity of the delayed ramp approximation,
the rising phase of the response at any saturating intensity has a common shape,
described by a 'delayed Gaussian' function of time. Responses at different intensity
differ simply by a time-scaling about the time t = teff.

Since each of the parameters in square brackets in eqn (6.8) is a constant, we thus
have an analytical solution for the saturating flash response, expressed in terms of
'basic' physical parameters: VRP is the rate of activation ofPDE subunits by a single
Rh*, Asub is the hydrolytic rate constant of a single activated subunit of PDE,
and n is the co-operativity index of channel opening by cyclic GMP. The product of
these parameters, VRP flsub n, represents an important quantity having the dimensions
of time-2. We shall denote this quantity as TO-2:

T -2 = vRP isubn = RP (2 kat/Km) n (6.9)
VCYtONAvBP(69

and we shall refer to ¢, as the characteristic time constant of transduction. With this
definition eqn (6.8) becomes

R{(t) = I-exp{I(D[tteff} t>t (6.10)
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This simple expression should be applicable throughout most of the rising phase of
responses obtained with saturating flashes. At very early times (for t % teff) eqn (3.3)
is a poor approximation, but this will only create a significant problem in the case of
extremely intense flashes; see p. 726.

Single-photon response
In Appendix B we deal with the single-photon case, which is complicated by

longitudinal diffusion of cyclic GMP within the outer segment cytoplasm. We obtain
the approximate solution for the normalized single-photon response R,(t) at early
times as

R(t) [t-teff t > teff. (6.11)

This is the same approximation as is obtained from eqn (6.10) at early times with
D= 1. Thus, for small signals, the solution obtained by considering longitudinal
spread is independent of the longitudinal diffusion coefficient D,, and is identical
with the solution obtained in the isotropic case.

Slope of the response to saturating flashes
From eqn (6.10) it may be shown (by setting the second derivative equal to zero)

that the photoresponse attains its maximal slope (its inflexion point) at a time tjnfj
given by

tinfl teff = Trq,I (6.12)

(where 'D is expressed in units of isomerizations per outer segment). The magnitude
of this maximal slope is given by

dIR(t)1 -
[dt )] =e t- DI (6.13)

and it occurs when the photoresponse crosses the level

R(tinfl1) = I-e-2= 0-393. (6.14)

Furthermore, the tangent line at the point of maximal slope extrapolates back to a
value at t = teff given by

R(teff) = 1-2e-2 = -0213. (6.15)

The interpretation of eqns (6.12)-(6.15) is as follows. For saturating flashes the
interval tinfl-teff to the occurrence of the maximal slope decreases, and the
magnitude of the maximal slope increases, as the square root of the flash intensity.
The maximal slope occurs when the normalized response crosses a fixed level close to
40 %, irrespective of intensity, and the tangent lines for different intensities all
intersect at time t = teff, and at a level about 21 % beyond the dark current level, i.e.
at F(teff) = 1-213. Note, however, that these predictions do not apply at low
intensities, since eqn (6.10) was derived for the isotropic case with bright flashes.
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Range of validity of the solutions
Below we briefly outline the limitations on the accuracy of the above analytical

solutions of our model.
Neglect of inactivation. The main limitation will arise from our neglect of the

inactivation reactions: inactivation of Rh*, hydrolysis of the terminal phosphate of
the G* GTP, and the accelerated cyclase rate brought about by lowered CO'. The
fastest of these reactions is likely to be the cyclase acceleration. With bright flashes
the reduction in calcium concentration has a time constant of ca 0-5-2 s (reviewed in
McNaughton, 1990; Pugh & Lamb, 1990). Because of the approximately inverse
fourth-power relation between CaO+ and cyclase activity (Koch & Stryer, 1988), the
increase in cyclase rate will become significant within about 01 s. However, with
bright flashes the rate constant ,(t) will have increased greatly by this time, and will
dominate the rising phase of the response. With dim flashes, the reduction in Ca2+ is
likely to be smaller, and will not have a significant effect until somewhat later in the
response. Nevertheless, by the time of the inflection point in the rise of the real
response to a dim flash (ca 0A4-05 s), neglect of inactivation will certainly be expected
to influence the solution.

Spatial gradients. It may be shown that the assumption of isotropy causes little
error for flashes of > 100 isomerizations.

Extremely intense flashes. For flashes delivering more than ca 105 isomerizations,
neighbouring reactions in the disc membrane overlap significantly, so that the basis
for eqn (A 1) disappears, and linearity with intensity is no longer expected. In
addition, the need to consider very early times invalidates the delayed ramp
approximation of eqn (3.3).
Approximation of eqn (6.2). Analytical and numerical methods show that the

approximation employed in writing eqn (6.2) has negligible effect on the bright flash
response; see e.g. Fig. 8.
Thus we expect our model to be accurate for the whole of the rising phase of

responses to saturating flashes (for (D < 105 isomerizations), and for the first few
hundred milliseconds of responses to dimmer flashes.

Inverse relation, for /8(t) from circulating current
In deriving eqn (6.4) we expressed the photocurrent in terms of /3(t), but it is

straightforward to invert the argument to obtain /3(t) from the circulating current
F(t) during the bright flash response. Equations (4.6) and (5.8) may be re-arranged
as

/3(t) = [/darkj
d

(cG/cGdark)]/(cG/cGdark), (6.16)

and
cG/cGdark = F(t)1n. (6.17)

Substitution of eqn (6.17) into (6.16) thus gives

A$(t) =- 1±d/+dark(F-/n 1). (6.18)
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Note that at early times the term 8dark (F-1n- 1) is zero, since F(t) = 1 at t = 0.
Hence an approximation to A/,(t) may be obtained from F(t) without knowledge of
18dark. Comparison of eqns (6.7), (6.9) and (6.18) shows that the characteristic time
constant , can be extracted from the slope of ,8(t) in a form which is independent of
n, as

nnd)6dt Ild ldF-
nD /D dtF[dt. (6.19)

Equation (6.18) is closely analogous to eqn (22B) of Hodgkin & Nunn (1988), which
was applied by them to determine /1 in response to stepping the rod to Li+-
substituted Ringer solution. In the present study eqns (6.18) and (6.19) form the
basis of the method used to estimate Afl(t) and T -2 from photoresponses to bright
flashes. These equations could equivalently be written in terms of lnF, using the
relation that (dF/dt)/F = d (lnF)/dt.

RESULTS

We shall begin by applying the analytical 'inverse' technique (i.e. eqns
(6.18)-(6.19)) to recordings of photocurrent, in order to determine the light-induced
activation ofPDE rate constant 8(t). Thereafter we shall compare the predictions of
the 'forward' approach (i.e. eqns (6.7)-(6.15)) with electrical responses to flashes of
light. Because of the existence of a wealth of electrical recordings from photo-
receptors, obtained in previous work in our two laboratories, it has not been
necessary to perform new experiments. Instead we have analysed existing recordings
(available in digital or analog form) from the experiments of Torre, Matthews &
Lamb (1986) and Cobbs & Pugh (1987); see legends to Figs 3-9 for details.

/1(t) calculated from the photocurrent
Application of the inverse method to the determination of /(t) from the rising

phase of the photocurrent is illustrated for two rods in Figs 3 and 4. In both figures
the upper and middle panels plot families of photocurrents in response to flashes of
increasing intensity, on slow and faster time bases. These responses have been
normalized to the circulating dark current, and therefore represent F(t). The lower
panels illustrate the curves for A,8(t) (i.e. /(t) -,8dark) calculated using eqn (6.18) with
n = 3 and /dark = 0 5 s-1; this value was adopted from the measurements of Hodgkin
& Nunn (1988) who obtained nf/dark = 15 s-5. With this value Of /dark, the second
term in eqn (6.18) was negligible except at the lowest intensities.
The cell in Fig. 3 was recorded with a suction pipette by Torre et al. (1986; their

Fig. 2), and was stimulated with 21 ms flashes delivering from 10 to 2000
isomerizations. The cell in Fig. 4 was recorded under voltage clamp by Cobbs & Pugh
(1987; their Fig. 2), and was stimulated with 22 ms flashes delivering from 70 to 7000
isomerizations. In accordance with the predictions of eqn (3.3), straight lines have
been fitted to the curves of A/1(t) in the lower panels of both figures, subject to the
constraint that for each cell they intersect the abscissa at a common time. The lines
provide a reasonable fit to the curves, indicating that A/,(t) rises approximately as a
delayed ramp.
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Fig. 3. Photocurrent responses and calculated increment in PDE rate constant A/3(t) for
a salamander red rod recorded with a suction pipette (i.e. unclamped). Panels A and B
plot the normalized circulating current F(t) at slow and faster time bases, while panel C
plots the increment in rate constant Afl(t) calculated using eqn (6.18), at all except the
lowest two intensities. To test the prediction of eqn (3.3), straight lines have been fitted
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Delay
The position of the common intercept (relative to the mid-point of the flash)

provides an estimate of the sum of teff and the filtering delay in the two cases. For
the unclamped cell in Fig. 3 the low-pass analog filtering contributed a delay of ca 10
ms; hence the intercept at ca 40 ms indicates that the sum of the transduction delay
teff and the cell's electrical time constant was ca 30 ms. For the voltage-clamped cell
in Fig. 4 the low-pass analog filtering contributed a delay of just 2-6 ms, so that the
intercept at 19 ms indicates that the transduction delay was teff 16 ms.

Slope
For the two cells, the fitted straight line at the highest intensity illustrated in each

case had a slope d,l(t)/dt of 55 and 225 s-2, at (F = 1980 and 7000 isomerizations
respectively; note that since ,3(t) is a 'rate' constant with units of s-', its slope has
units of S-2. Equation (6.19) shows that the characteristic time constant of
transduction r can be obtained from the slope d,//dt, as -r-2 = (nd,8/dt)/4D, giving
T, values of 3-5 s and 3-2 s for the two cells. The rate VRP of activation of PDE* per
isomerization can also be derived in this way, provided that sub is known. Equation
(6.9) gives VRP = T;!-2/(n sSUb)o,So that substitution ofn = 3 and -sub~ 6 x 10-6 s' (see
Appendix C) yields VRPp 4600 and 5400 activated PDE* subunits s-1 per
isomerization, for the two cells.
For flash intensities spanning the general range shown in Figs 3C and 4C

(100-10000 isomerizations), we found qualitatively similar results from analysis of
the responses of eight cells. In each case the curves for A,/(t) initially rose
approximately according to the delayed ramp equation. The magnitudes of the
slopes obtained for these cells are presented subsequently in Fig. 6, but before
interpreting these values we shall first describe the behaviour observed at higher
intensities.

Behaviour at higher intensities

Photocurrents and calculations of ,8(t) are illustrated in Fig. 5 for another cell
exposed to considerably higher intensities. For these traces the dark value /3dark iS
negligible, so that A/3(t) and ,l(t) may be considered to be equivalent. In this
experiment the cell was voltage-clamped and the records have been filtered at a
higher cut-off frequency in order to avoid limitations imposed by the cell's capacitive
time constant or by the analog filtering; the Gaussian digital filter (see legend) caused
no additional time delay. The upper panel plots traces of F(t) from the cell illustrated
in Fig. 8A of Cobbs & Pugh (1987), for 20 Its flashes at time t = 0, estimated to have

to the A,8(t) curves, subject to the constraint that they intersect the abscissa at a common
time. Cell from Fig. 2 of Torre et al. (1986); maximum current 44 pA; 21-6 'C. Traces
filtered DC to 40 Hz, which gave an effective delay of 10 ms; sampling interval 5 ms; no
Gaussian filtering. Flashes of 21 ms duration delivered: D = 9, 19, 38, 76, 145, 305, 1070
and 1980 isomerizations. The gradient dF/dt in eqn (6.18) was determined by a linear
regression fit over an N-point window centred at the time of interest; for this cell N = 11
points. The fitted lines have slopes of 0-95, 1-95, 3-9, 7-8, 28-5 and 54-8 s-2, and intersect
the abscissa 40 ms after the mid-point of the flash; this interval includes the analog
filtering delay and the cell's capacitive time constant.
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Fig. 4. Photocurrent responses and calculated increment in PDE rate constant A/J(t) for
a voltage-clamped salamander red rod. Details as for Fig. 3, except as follows. Cell from
Figs 1 and 2 of Cobbs & Pugh (1987); maximum current 58 pA; 22-5 'C. Traces in A
filtered DC to 15 Hz. Traces in B and C filtered DC to 150 Hz, which gave an effective
delay of 2-6 ms; also Gaussian filtered at 25 Hz; sampling interval 2-2 ms. Flashes of 22
ms duration delivered: (D = 70, 220, 700, 2200 and 7000 isomerizations. The A/J(t)
calculations are for the brightest four of these; the gradient was fitted over N = 7 points.
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delivered 2-5 x 104, 2-5 x 105, 25 x 106 and 1-6 x 108 isomerizations. The lower panel
plots ,i(t) calculated from the curves in the upper panel according to eqn (6.18), using
n = 3.

Straight lines have been fitted to the traces in Fig. 5B. At an intensity of 25000
isomerizations the intercept with the abscissa occurs at ca 13 ms, and at higher
intensities the intercepts occur at earlier times. Such behaviour indicates break-down
of the simple 'delayed ramp' approximation for PDE*(t) in which teff is assumed to
be independent of intensity. The straight lines provide a reasonable fit, and the value
of the intercept for 25000 isomerizations indicates that teff 13 ms in this case
(since the filter delay was only 0-26 ms).

Dependence of the slope of ,8(t) on flash intensity
A further prediction of eqn (3.1) or (6.5) is that the slope of the fitted lines in

Figs 3-5 should scale in direct proportion to flash intensity. In the case of Fig. 5 the
slopes of the lines at the first three intensities are in the ratio 1: 8-1:23, while the flash
intensities were in the ratio 1: 10: 100; this suggests that linearity breaks down above
ca 105 isomerizations.
The prediction of linearity with intensity may be examined by plotting n (d/l/dt)/4D

against flash intensity 4D. If ,8(t) is proportional to D, then this function should not
vary with intensity, and this prediction is tested in Fig. 6. The factor n is included
in order to render the plotted function independent of any parameters of the model.
Equation (6.19) shows that n (d,//dt)/(D may be obtained directly from F(t) as

I d I dFl
(Ddt L F dt '

and that it is equivalent to T-2. The rate vp of activation ofPDE* subunits per Rh*
may be found from this parameter, if the value of A.ub is known; see eqn (6.9). Hence
we also present a second ordinate scale on the right-hand side of Fig. 6, giving the
rate vRP based on an assumed value of /8sUb = 6 x 10-6 S-1 (Appendix C).

Results from fifteen salamander rods are collected in the double logarithmic plot
of Fig. 6, where straight lines join symbols for individual cells. Filled symbols
represent voltage-clamped recordings, while open symbols represent suction pipette
recordings. Up to an intensity of about 10000 isomerizations it appears that T-2 (or
equivalently, VRP) estimated in this way is independent of flash intensity. This
implies that the slope dfl/dt in plots of the kind of Figs 3-5 is directly proportional
to (D up to that intensity. The mean value Of T-2 for all intensities up to 10000
isomerizations was 0-076 + 0-015 S2 (S.D.; thirteen cells, at fifty-one intensities in all);
this corresponds to ,= 3-6+0-4 s (eqn (6.19)). For flUb t 6 x 10-6 s-1 and n = 3 this
corresponds to a mean PDE activation rate of PRP N 4200 + 800 PDE* subunits s-
per Rh*.

The fitted lines have slopes of 4 3, 12-2, 47-8 and 225 s-2, and intersect the abscissa 19 ms
after the mid-point of the flash. The numbers of isomerizations here and subsequently
have been reduced by 0-262 log units from those given by Cobbs & Pugh (1987), to correct
for an error in the value of extinction coefficient for porphyropsin used in that paper.
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Value from Hodgkin & Nunn (1988)
Also included in Fig. 6 is a value, marked by an asterisk, obtained from the

experiments of Hodgkin & Nunn (1988) at the one intensity for which we could
determine the slope of the rising phase of their ,/(t). They measured the rate of decay

A
1.0

0.8 k

0.6
F(t)

0 4 k

0.2 _

0

0 20 40 60 80 ms
B

150

100 _

A(t)

50 _

0

0 20 40 60 80 ms

Fig. 5. Voltage-clamped photocurrent, and calculated PDE rate constant ,(t), for brighter
flashes. A, normalized circulating current F(t). B, #1(t) calculated from the traces in A using
eqn (6.18); note that dark is negligible here, so that ,8(t) A/1(t). Salamander red rod from
Cobbs & Pugh (1987), Fig. 8A: maximum current 82 pA; 22-5 °C; 20 ,us flashes delivered
(D = 2-5 x 104, 2-5 x 105, 2-5 x 106 and 1t6 x 108 isomerizations. Bandwidth DC to
1500 Hz (giving a delay of 0-26 ms); Gaussian filtered at 200 Hz; sampling interval 440
,us. Slopes of the lines in B are 600, 4840, 14000 and 30000 s2.

of the light-sensitive current upon a rapid jump into Li'-substituted Ringer solution,
and they calculated - (dF/dt)/F as in the first term of eqn (6.18). With Li+ exposure
they assumed that CaW+ rose rapidly, so that the cyclase was rapidly disabled (i.e.
a = 0). In this way they were able to estimate / at various times after a light stimulus.
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From their Fig. 11 we measured the slope of their plot of b(t) (i.e. db/dt =
d/dt{-(dF/dt)/F}, equivalent to our nd,3/dt) to be 11-6 s-2 at their intensity of
D = 143 isomerizations; this gives (n d,8/dt)/4D = 0-081 s-2, virtually identical to our
independent measurements of the same parameter by a different approach.

I0 *

1021o2 103 104 105 106 104
~~~~~4' 3~~~~~~~~~~~~~~~

2~~~~~~~~~~~~~~~~~~~~~~~~~~ _

10-2

10 102 103 104 Jos 106 107
12 (isomerizations per rod per flash)

Fig. 6. Dependence of the calculated r,-2 (or PRP) on flash intensity, for salamander red
rods. The slope d/?/dt of responses such as those in Figs 3-5 has been measured, and
converted to r,-2 and yRP. The left ordinate is scaled in raw units of (ndfl/dt)/D = r7-2
(see eqn (6.19)), while the right ordinate has been converted to v,p using the estimated
value of flSub = 6 x 10-6 s-1 (see eqn (6.9) and Appendix C). Filled symbols are from eight
cells recorded under voltage clamp; open symbols are from seven cells recorded with a
suction pipette (free cells); values for each cell are joined by straight lines. Circles, from
recordings of Torre et al. (1986); triangles, from recordings of Cobbs & Pugh (1987). The
data point marked by an asterisk was obtained from Fig. 11 of Hodgkin & Nunn (1988);
see text.

Dependence of delay time on flash intensity
The time delay teff preceding the rampwise increase in ,(t) could only be estimated

reliably for voltage-clamped cells presented with moderately bright flashes. In the
lowest intensity region at which we could measure the delay accurately (5000 to
25000 isomerizations), the mean value of teff was 16-1+2-0 ms (S.D., seven cells;
results not shown). Although the value decreased at higher intensities (with a slope
of roughly 2 ms per log unit of intensity), there was no evidence to suggest that the
true value of teff at low intensities exceeded 15-20 ms.

Deviation of ,B(t) from linearity
In Fig. 6 it is clear that a marked decline in (nd,f/dt)/D occurs at intensities above

about 20000 photoisomerizations. In addition to this breakdown in linearity between
dfi/dt and intensity, two kinds of deviation from the predicted rampwise increase
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in ,8(t) were also observed. It was found as a general feature (see Figs 3 and 5) that,
following the initial approximately linear rise in /1(t), a distinct fall occurred.
Furthermore it was also found (especially at high intensities) that the rise in /(t)
often appeared to taper off from its initial slope, and the calculated value of ,(t)
seemed to asymptote towards a maximum (results not illustrated).

Non-linear behaviour of these kinds is not predicted by equation (3.1), but could
arise from several mechanisms. Firstly, the effective buffering power BP may not be
constant, but may instead increase as the free concentration of cyclic GMP drops; in
Appendix C we find that when F(t) has dropped to 1/8, BP may approximately
double. A second mechanism might involve the non-instantaneous closure of the
cyclic GMP-gated channels. Recent power spectral measurements from excised
patches exposed to cyclic GMP have shown a Lorentzian component with a time
constant of ca 3 ms (V. Torre, M. Straforini & T. D. Lamb, personal communication)
suggesting that the final tail of channel closure may be slower than previously
assumed. A third relevant factor might involve competition for unreacted PDE, but
calculations suggest that such an effect would only become significant at intensities
considerably higher than those in Fig. 5. A fourth contributory factor might stem
from alteration in the cytoplasmic GTP/GDP ratio, as GDP is released and GTP is
consumed during the activation of the G-protein; but again, calculations suggest
that this effect is likely to be minor during the rising phase.

Fit of the analytical solutions to the electrical response
Responses to dim flashes
We have compared the prediction of eqn (6.11) with the experimentally measured

average response to very dim flashes, from our own experiments and those of others.
A good example is provided by the response in Fig. 4 of Baylor et al. (1979). For the
first 1 s of that response (not illustrated here) the waveform is well-fitted by the
delayed parabola of eqn (6.11), with r, = 3-1 s and with a total delay of 50 ms (but
the value of this delay is not critical). The total delay is made up of expected delays
of approximately 10-20 ms for teff, 10-20 ms for the cell's electrical time constant,
and approximately 15 ms for the low-pass analog filtering used. In this experiment
the estimated number of photoisomerizations, (D % 0 53, should be very accurate,
since it was determined from measurement of the probability of obtaining a
successful response in the 'photon counting' range (see Baylor et al. 1979).
We analysed the dim flash kinetics in published recordings from twenty studies in

the literature, and found no reason to reject the fit of the delayed parabola of eqn
(6.11); results not illustrated. At room temperature in lower species the mean value
of r, was 3-4 s for toad (five studies), slightly shorter than the mean of 4 7 s for
salamander rods (seven studies). For cones from turtle and salamander the mean r,
was 1P8 s (two studies). At body temperature in mammals the mean r, for both rods
and cones was approximately 0 5 s (three and two studies).

Responses to families of flashes
Figure 7 illustrates responses of a salamander rod to a series of flashes of increasing

intensity, replotted from the original recordings of Fig. 2 of Torre et al. (1986). The
responses in Fig. 7A were obtained under control conditions, while those in Fig. 7B
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were obtained after incorporation of the calcium buffer BAPTA (bis-(O-
aminophenoxy) ethane-N,N,N',N' tetraacetic acid) into the cytoplasm. Because the
presence of buffer greatly slows down changes in Ca2+, the responses in Fig. 7B would
be expected to reflect the transduction process with one of the mechanisms of

A B

CL

0

0.

O 1 s 0 1s

Fig. 7. Comparison of families of flash responses from a salamander rod with predictions
of the model. The noisy traces are from Fig. 2 of Torre et al. (1986), for a salamander rod
stimulated by flashes delivering from 9 to 1980 isomerizations. A, under control
conditions. B, with the calcium buffer BAPTA trapped in the cytoplasm. Responses low-
pass filtered at 20 Hz (6-pole Bessel), giving a delay of about 22 ms. The smooth curves
were obtained as follows. On the left is plotted eqn (6.10) with -,g = 3-6 s and teff = 20 ms;
thus the total delay to onset of the PDE ramp was 42 ms from the mid-point of the flash.
On the right is plotted the solution obtained by numerical integration of the differential
eqn (4.6), substituted into eqn (5.8), with ,(t) obtained from eqn (6-7)- Same values of z5,
and teff as on the left, together with 1lda,k = 2 s-' and n = 3. In an alternative procedure,
curves for the right hand panel were calculated using #da,k = 0 5 s-1, with the addition of
a first-order removal of the activated G-protein with time constant 0-67 s; those curves
(not shown) were almost indistinguishable from the illustrated curves.

inactivation (altered calcium concentration) effectively disabled. As shown by Torre
et al. (1986), the early rising phase of the response at any fixed intensity is common
in the two cases, and the main difference between the two families is that the control
responses begin, and complete, their recovery sooner.
The theoretical curves fitted to Fig. 7A were obtained from the simplest model, eqn

(6.10). As in the fit to the dim flash response, only two parameters are involved: the
characteristic time constant r¢, (3-6 s in this rod) and the short delay teff (20 ms). In
this figure, though, it is not just a single response, but the early part of the entire
family of responses, which is fitted by the model with just two parameters. At times
greater than about 200-300 ms, however, the theoretical curves systematically
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depart from the experimental responses in Fig. 7A, presumably because of a
combination of at least two factors: the onset of inactivation reactions in the real
cell, and the approximations involved in the simple model.
The first of these factors can be minimized by examining responses obtained when

the calcium concentration is buffered, as in the experimental traces in Fig. 7B. The

10.5

1_ 21-2 1 _L

F(t)

1*6x108 2.5x105

0 2-5xl 06 vs

0 20 40 60 80 100 ms

Fig. 8. Normalized circulating current F(t) (noisy traces) for intense 20 ,ts flashes which
delivered the indicated number of photoisomerizations at t = 0. Tangent lines from eqns
(6.12)-(6.15), and analytical solutions from eqn (6.10), are drawn near the traces (except
for the most intense flash). The common intercept of the tangents at F = 1-213 gives the
effective delay time teff 10 ms. For the lower two intensities, the tangent lines have
slopes of 16-4 and 48-5 s-' at (D = 25000 and 250000 isomerizations. At the lowest
intensity, substitution into eqn (6.13) gives Tr 5-8 s. The smooth curves plot the
analytical solution eqn (6.10) for the lower three intensities, with r, = 5 s and teff = 9 ms.
At 25000 and 250000 isomerizations the fit to the experimental traces is good, but at
2-5 x 106 isomerizations the curve rises too quickly. Interrupted curves: numerical
integration of eqn (4.6) with eqn (6.7), and substitution into eqn (5.8), using fldark = 1 S-'
and n = 3; the interrupted curve can be distinguished from the continuous curve only at
the lowest intensity.

second factor may be avoided by using numerical integration of eqn (4.6), rather
than the simplified approach of eqn (6.2) which led to eqn (6.10). The theoretical
curves illustrated in Fig. 7B were obtained by numerical integration (see legend), and
provide a good description of the rising phase of the calcium-buffered responses out
to almost 1 s, for intensities from about 10 to 2000 isomerizations.

Responses to intense flashes
Responses and predictions are compared in Fig. 8 at higher intensities, from

2X5 x 104 to 1X6 x 101 isomerizations. Superimposed tangents from our simplified
theory (eqns (6.12)-(6.15)), fitted to the traces for the lower three intensities, appear
to intersect roughly as predicted at F . 1-21, at a time of teffr 10Ims. Furthermore,
the predicted time scaling according to 0-i also appears to hold, at least up to
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250000 isomerizations: for a 10-fold increase in intensity, from 25000 to 250000
isomerizations, the slope of the tangent increased from 16-4 to 48-5 s-', a factor of
2-96, in comparison with the prediction of V/10 = 3-16.

Figure 8 also illustrates the theoretical curves predicted by the model at the lower
three intensities. The continuous curves plot the delayed Gaussians of eqn (6.10),

X 103

o 102

E10-E
0
c

E
E-
x o'

10-1'
10 102 103 104 105 106 107 108 109

Isomerizations per flash

Fig. 9. Maximal slope of F(t) over a wide range of intensities, from voltage-clamped
salamander rods stimulated with 20 ,us flashes. The points are replotted from Fig. 12 of
Cobbs & Pugh (1987); *, data from a single cell; *, averages from at least four cells. The
dotted and interrupted lines are respectively the Michaelis (hyperbolic) relation, and a
curve drawn by eye, as fitted by Cobbs & Pugh (1987). The continuous straight line has
a slope of 0 5 in these double logarithmic co-ordinates, and represents the square-root
prediction of eqn (6.13); its position corresponds to a value of the characteristic time
constant T = 4-1 s. The abscissa has been altered by 0-262 log units from that of Cobbs
& Pugh (1987) to correct for an error in the value of extinction coefficient for the
photopigment used in that paper.

with Ts = 5 0 s and teff = 9 ms, which provide a good fit to the experimental results
at the lower two flash intensities, 25000 and 250000 isomerizations. Not
unexpectedly, the fit of the simple model breaks down at intensities higher than
250000 isomerizations.
The interrupted curves in Fig. 8 plot the results of numerical integration of eqn

(4.6), using the same values of r, and teff as for the continuous curves, and with
fldark =1 s-1. The agreement between the continuous and interrupted curves is very
close, and indeed the separate curves can only be distinguished at the lowest
intensity ((D = 25000 isomerizations). In this plot we deliberately increased fdark to
1 s-', in order to illustrate a difference between the curves; at the correct value of
fldark = 0 5 s-' they were difficult to distinguish. This shows that the simplification in
eqn (6.2) causes little error.

Slope of the bright flash response
In Fig. 9 the experimentally measured maximal slopes from Fig. 12 of Cobbs &

Pugh (1987) are compared with the predictions of eqn (6.13). Over a range of at least
three log units of intensity (from about 250 to around 250000 isomerizations) the
slope closely obeys the square root prediction, given in these double logarithmic co-
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ordinates by the straight line with slope 0 5. From the position of the line, r, for these
salamander rods is obtained from eqn (6.13) as approximately 4-1 s. Hence the model
provides a simple but accurate analytical description of a further experimental result
in the literature which has not previously been treated in theoretical terms.

DISCUSSION

Comparison of predictions with experiment
The theoretical predictions of the model were found to agree with experiment

remarkably accurately:
Timecourse of PDE*(t). The effective rate constant ,3(t) of cyclic GMP hydrolysis,

which is proportional to PDE*(t), can be extracted from the normalized circulating
current F(t), using eqn (6.18): A/3(t) - (dF/dt)/nF. As shown in Figs 3-5, the
theoretical prediction that /3(t) should initially increase as a delayed ramp (eqn (3.3))
was indeed found to be obeyed. Over most of the time window for which /3(t) could
be measured reliably (prior to substantial suppression of the circulating current) the
rise in A/3(t) was well-fitted by a straight line. For intensities up to ca 25000
isomerizations the fitted lines intersected the abscissa at a common time, teff~ 15 is,
termed the effective delay time.

Linearity ofPDE*(t) with intensity. As also predicted by eqn (3.3), the slope of the
fitted lines was very nearly proportional to flash intensity 0, up to quite high
intensities. This was tested by plotting (against flash intensity, in Fig. 6) the
parameter (n d,#/dt)/(D, which is equivalent to r -2. Below about 104 isomerizations
per flash, f,-2 was independent of intensity, with a mean value of 0-076+ 0-015 (S.D.)
s-2, corresponding to r, - 3 6s (for salamander rods at 22 °C). Even at an intensity
of (D . 2-5 x 105 isomerizations the value of the parameter had only fallen to about
half.

Single-photon response. The initial rise of the response to a dim flash was well-fitted
by a delayed parabola, as predicted by eqn (6.11). While this finding does not provide
a strong test of the theory, it does provide a simple means to extract values for rs
from records in the literature.

Bright flash response. For bright flashes (Figs 7-8) the form of the recorded
electrical response was well described over its whole rising phase by the 'delayed
Gaussian' expression of eqn (6.10). Apart from the fixed short delay teff, the response
family was completely characterized during the first few hundred milliseconds by the
single parameter r., for intensities up to approximately (D = 105 isomerizations.
Maximum slope of photoresponse. The normalized maximum slope of the

photocurrent varied with flash intensity in close agreement with the square-root
prediction of eqn (6.13), for intensities from about 250-250000 isomerizations.

Response-intensity relation. The exponential form of saturation predicted by the
model (eqn (6.10)) has indeed been observed over the last decade in a variety of
experiments, beginning with those of Lamb et al. (1981).

Extremely intense flashes. The kinetic predictions of the model were found to
deviate significantly from experiment for flashes delivering more than about 250000
isomerizations. Such deviation is not unexpected: the simple 'delayed ramp '
description of the protein reactions is an approximation which will not be applicable
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at early times when there are large numbers of isomerizations per disc; see pp. 727,
734.

Implications of the equations
Characteristic time constant of transduction
The overall gain of phototransduction may be expressed in terms of the single

parameter T 5-2, where we refer to T as the characteristic time constant of
transduction. In eqn (6.9) this overall gain is expressed as the product of three
underlying parameters: rf-2 = VRPfsUb n. These three parameters may be thought of
as the gains of three separate processes: VRP is the overall gain linking rhodopsin
isomerization to the activation of PDE subunits, fisub is the hydrolytic gain linking
activated PDE subunits to cyclic GMP concentration, and n is the gain linking cyclic
GMP concentration to channel activity. Apart from the short delay teff, all that is
needed to obtain the photoresponse is the parameter r, -2 together with the intensity
(D (eqn (6.10)).

Rate of activation of PDE*(t)
The rate VRP of activation ofPDE* subunits per Rh* may be found from r-2 using

eqn (6.9). For ro -2 = 0-076+ 0-015 s-2, substitution of n = 3 and fSUb t 6 x 10-6 s-1
yields vRP = 4200+ 800 PDE* s-1 per Rh*. Clearly the result of this calculation
depends critically on the value we have adopted for ASUb (see Appendix C), and we
stress that we have not been able to determine this unequivocally. Subject to this
uncertainty, our results indicate that a single photoisomerization triggers the
activation of PDE* subunits at a rate of about 3000-6000 s-.
For comparison, the diffusion limit on the rate of activation of the G-protein was

calculated theoretically as VRG < 7000 G* S-1 per Rh*. The main source ofuncertainty
in that limit was the value for the lateral diffusion coefficient DG of the G-protein at
the disc membrane surface. Since the upper limit on the coupling gain CGP is about
0 9, the diffusion limit on the rate of activation ofPDE subunits is about 7000 x 0 9,
or VRP < 6300 PDE* S-1 per Rh*. Hence, subject to the reliability of our estimates
of sub and DG, it appears that the PDE is activated at a substantial fraction of the
limit which is theoretically possible for the pair of cascaded reactions (i.e. ca
4200/6300). We therefore conclude that it is likely that each of these protein
activation steps proceeds at a rate that cannot be far short of its diffusion limit; see
also Kahlert & Hofmann (1991).

Response-intensity relation
The exponential form of the observed response-intensity relation was originally

taken as support for the occurrence of localized saturation, whereby all the channels
are closed in a short region near the site of photon absorption (Lamb et al. 1981).
However, eqn (6.6) indicates that the exponential form is expected as the inevitable
consequence of the reactions known to occur in the cytoplasm, irrespective of the
occurrence of longitudinal spread of excitation. Hence the exponential form cannot
be taken as evidence supporting localized saturation (sometimes referred to as 'total
occlusion').

Furthermore, our analysis of the single photon response in Appendix B shows that
local saturation of channels will not occur to an appreciable extent during the first
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500 ms of the response of amphibian rods at room temperature; see p. 756. In a
salamander rod, for example, the analysis indicates that only about 10% of the
channels are closed at the point of isomerization 500 ms after the flash. This
calculation depends of course on the value adopted for the effective longitudinal
diffusion coefficient DX of cyclic GMP in the cytoplasm. Recently Cameron & Pugh
(1990) have estimated the diffusion coefficient directly, by incorporating cyclic GMP
into the inner segment and measuring the induced outer segment current. The value
they obtained for salamander rods was 3-10 /tm2 s-1 (mean 7 /tm2 s-1), very close to
the value estimated theoretically on the basis of the cytoplasmic buffering power and
baffling by the discs (see Appendix C).

Time course of the photoresponse
The underlying t2 rise in the response to an impulse implicates the intervention of

N = 3 stages of pseudo-first-order delay in generation of the response; see Baylor et
al. (1974). In our model these three integrating processes are identified as: (i) the
step-wise activation of rhodopsin by a photon, (ii) the catalytic activation of G-
protein by an Rh*, and (iii) the enzymatic hydrolysis of cyclic GMP by the activated
PDE*. The link from G* to PDE* contributes only a short delay, which we have
consolidated into the effective delay time teff.

Human rods
The interpretations may be extended to human rods in vivo through analysis of the

electroretinogram (ERG). It has long been accepted that the a-wave of the ERG is
associated with photoreceptor activity, and it seems likely that its time course is an
accurate reflection of the suppression of the circulating rod current. Hood & Birch
(1990) have recently investigated the early rise of the ERG in response to very brief
(10 its) flashes. Their Figs 8 and 9 indicate that the a-wave rises approximately as t2

after an initial delay of ca 3 ms, although the authors in fact interpreted the rise as
ca t4 without allowance for a fixed delay; it is unclear what proportion of the ca 3 ms
delay represents their analog filtering. The existence of an initial rise according to a
delayed parabola suggests that our model also provides an accurate description of
human rod activity. Taking their maximum response to have been 120 ,V, and using
the intensity conversion that 1 scotopic troland s equals 5 isomerizations per rod, the
characteristic time constant for human rods is calculated as T, I 0-5 s. This coincides
very closely with the value we determined for photocurrents from other mammalian
rods (p. 742).

Summary
In summary, our analysis provides a unifying theoretical framework for studying

the responses of photoreceptors from different species, by capturing the fundamental
gain of transduction in terms of a single parameter determined by the biochemical
and physical properties of the outer segment.
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APPENDIX A

Diffusion of proteins associated with the disc membrane
In this Appendix we present a theoretical consideration of the interactions between the proteins

of transduction in the disc membrane as a result of diffusional contact. This analysis is presented
in terms of the specific cascade Rh*-G*--PDE*, but it should also be applicable in other
comparable cases of diffusional activation mediated by a G-protein.

Enzymatic activation with two-dimensional diffusion, Rh*-G*
We begin by considering the diffusional interaction of a single activated molecule of Rh* with

molecules of G-protein. The molecules need first to collide, and then to react. The diffusion-limited
rate of such an enzymatic reaction has been calculated by Naqvi (1974) and Torney & McConnell
(1983), through the application to two dimensions of the approaches of Smoluchowski and Noyes.
One of the assumptions in this approach is that the reaction between the two diffusing species is
equivalent to the case in which the molecule of Rh* is fixed and the G-GDP diffuses with an
effective diffusion coefficient (DRh + DG). By 'diffusion-limited' it is meant that the reaction
between Rh* and G GDP proceeds instantaneously whenever the Rh* encounters a molecule of
G -GDP, i.e. the reaction occurs at the collision rate.
The diffusion limit to the rate VRG at which an Rh* could activate molecules of G-protein is then

given approximately by
V47T(DRh +DG) CG(A1

VRG <I [4(DRh+DG) t/p2]_ 115 (A 1)

where t is time after the generation of the single molecule of Rh*, p is the encounter distance (the
distance apart at which Rh* and G -GDP interact), and DRh, DG and CG are as defined on p. 724 (see
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Table 1). Equation (Al) is a first-order expansion of a more complicated expression, and the
approximation is subject to the proviso that the denominator is reasonably large (say > 4; see
Naqvi, 1974, p. 282).

In accord with modern views of reactions in two dimensions, eqn (Al) shows that the diffusion-
limited reaction rate is not constant, but declines approximately logarithmically with time (Naqvi,
1974; Torney & McConnell, 1983). In the range of times which are of interest to us, however, it
turns out that this variation is relatively small, so that VRG may be approximated as a constant.
If we take the effective diameters of rhodopsin and G,py as 2-8 nm and ca 7 nm (see Liebman et al.
1987) then the encounter distance, given by the sum of the radii, would be approximately p = 5 nm.
With (DRh+DG) = 19 ,tm2 s' (see Table 1) we obtain 4(D.h+DG)t/p2 = 3-2 x 105 s' t. For
calculation of the rising phase of the rod photoresponse the times of greatest interest are from about
5-500 ms, i.e. about a log unit either side of t = 50 ms. Over this range 4(DRh +DG)t/p2 varies from
1-6 x 103 to 1-6 x 105, so that the denominator in eqn (Al) varies from 6-2-10-8, indicating that
the limiting value of VRG varies by about +30% from its limit at t = 50 ms.
At t = 50 ms the denominator in eqn (Al) equals 8-5, so that eqn (Al) reduces to

PRG S 1,5 (DRh+DG) CG. (A 2)
With DRh = 0 7 j2s-1, DG 1-2 ,M2 S-1 (but see p. 757 for qualification), and CG Z 2500 #M-2,
eqn (A2) gives the diffusion-limited reaction rate (or encounter rate) as VRGS!7000 s-1.

In the event that there is any delay other than diffusion which limits the rate of reaction, then
the actual rate will be even less dependent on time than is calculated above. Hence, whether or not
the reaction is diffusion-limited, it will be appropriate to take PRG as a constant. Accordingly the
average rate d[G - GTP]/dt of activation of G-protein to the form G *GTP may (ignoring
inactivation) be taken as

d[G *GTP]/dt = Rh* VRG (A 3)
where Rh* represents the number of activated receptor molecules, and where JRG is a constant.
Thus when inactivation reactions are ignored, the quantity of G-GTP will simply rise as the
integral of Rh*(t).

Time course of activation of Ga** GTP
We need also to allow for any delays in the series of microsteps 2A-2E. (Note that the sum of

the delays in Steps 2A-2D cannot exceed VRG--) According to Kahlert & Hofmann (1991), the
binding of GTP (Step 2C) may cause a delay, and we shall also allow for the possibility that
dissociation of the a-subunit (Step 2E) may not be instantaneous; hence we introduce 'r2C and T2E
as the two time constants. The time course of G.* -GTP is then found from the delayed integral of
Rh*(t) in eqn (1.2), as

G*(t) = (D VRG ramp(t) * delay(R, T2C' T2E' t), (A4)

where we have employed the terminology ramp(...) and delay(...) defined on p. 723.

Subsequent reaction, G*÷ PDE*
We now consider the subsequent reaction in which the product of the enzymatic step, G.* * GTP,

interacts with the third protein, the PDE. The problem to be analysed is that molecules of
G * GTP, which are produced sequentially at various points on the pathway taken by Rh*, diffuse
laterally so as to contact the PDE.

Macroscopic approximation
Since molecules of G,* *GTP are expected to be produced at a rate exceeding 1000 s-1, it will be

appropriate to explore a macroscopic description involving classical diffusion theory. The problem
is, however, complicated by the fact that the molecules of G.* *GTP are produced not at a single
point, but wherever Rh* happened to be at the time of reaction with a molecule of G-protein; the
molecules of G,* *GTP then diffuse from these initial locations.

Simplifications
In order to render the problem tractable we shall make several simplifications. Firstly, we shall

make the approximation that Rh* is immobile, so that G.* *GTP is produced at a single point, and
we shall compensate for this by increasing the effective diffusion coefficient for Ga* GTP by an
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amount equal to the actual diffusion coefficient D,, of rhodopsin, in an attempt to allow for the
movement that Rh* would already have made. Secondly, we shall make the approximation that
the PDE also is immobile, and we shall compensate by further increasing the effective diffusion
coefficient of Ga* -GTP by the actual diffusion coefficient DPDE of the PDE. Thirdly, we shall
assume that the domain in which the molecules interact is unbounded, i.e. that there are no edge
effects and no competition between the reactions of different photons.

Thus the situation we need to analyse is that Ga* * GTP, which is produced at a constant rate VRG
(at an arbitrary point defined as r = 0), diffuses radially with diffusion coefficient

D=DRh+DGa +DPDE- (A 5)

The diffusing G*a GTP contacts immobile molecules of PDE, present in the disc membrane at
concentration CPDE and each possessing two y-subunits. The Ga* GTP reacts with the PDE to
produce PDEY-- * GTP by a mechanism which we shall specify subsequently.

Spatial profile of activated G-protein
With a constant flux at the origin r= 0, the solution for the density g*(r, t) of Ga* *GTP has been

given by Carslaw & Jaeger (1959), in their eqn § 10-4(4), as

VRG I r2
g*(r, t) = 4rD (4Dt) (A 6)

where El(q) is the exponential integral (see Abramowitz & Stegun, 1964, chapter 5). This solution,
which is illustrated in Fig. 10, breaks down for very small radii, since we have assumed Rh* to be
immobile. A noteworthy feature of the solution is that r and t appear only in the argument of the
function, and then in the form r2/4Dt. This has the important consequence that the spatial profile
of the solution is invariant with time. Thus, as time progresses, the shape of the solution is
unaltered; all that changes is the scaling in the radial dimension, which increases in proportion to
V/4Dt.

Spatial profile of activated PDE
In order to obtain the diffusion limit on the rate of reaction, we shall now assume that G.* *GTP

reacts instantaneously with the PDE, according to some saturation functionfGp, so that the density
py ga(r,t) of PDEy-Ga* *GTP is related to the density g*(r, t) of Ga* * GTP by

py9ga(r, t) = fGp[g*(r, t)]. (A 7)
Hence the density p - gj(r,t) of the reacted form PDEy-Ga* GTP is found by application of the
saturation relation eqn (A7) to eqn (A6), as indicated by the lowermost curve in Fig. 10. Note that,
in this approach, any distortion of the spatial profile of g*(r,t) resulting from the binding of
Ga* GTP to the PDE has been ignored.

Because of the 'radial scaling' property of eqn (A6), the fraction of G.* *GTP molecules which
have reacted to generate PDEY- Ga* GTP must be a constant, independent of time. Thus the
'coupling gain' CGP, defined as the ratio

CGP =Py Ga(t) / G*(t), (A 8)
will be a constant; such a situation will apply irrespective of the form of the saturation relation.
One way to appreciate this property is to note that the total quantities PY Ga(t) and G*(t)
represent the integrals (over the whole disc surface) of the functions py ga(r,t) and g*(r,t) plotted
in Fig. 10. Since the abscissa is scaled in proportion to r2, the factor P7, Ga (t)/G*(t) is given by the
ratio of the areas under the respective curves for py - g,(r,t) and g*(r,t). Hence CGP the ratio of areas,
is a constant for any given saturation function fGp in eqn (A7).
Because this ratio is constant, it follows that the PDEY,G,a* GTP will also be produced at a

constant rate, so that
d[Py - Ga(t)]/dt = ]VRP' (A 9)

where
PRP = CGP VRG- (A 10)

Here VRP is the rate ofproduction ofPDE -G * GTP as a result of the presence of a single activated
molecule of Rh*.
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Limiting caSe
An important limiting form of the saturation relation fGp applies when G* *GTP reacts with all

available y-subunits of PDE. Because of the existence of two y-subunits per PDE, the density of
activatable subunits will be 2 CPDE. In this case the saturation function in eqn (A7) may be written
as

fGP = 2CPDE 9* > 2CPDE

fGP= 9* * < 2CPDE (All)
indicated by the continuous curve in Fig. 10. As we have assumed that the reaction between the
molecules occurs instantaneously upon every contact, the overall model now corresponds to the
diffusion-limited activation of PDE subunits by G.* - GTP.

3.0
-- g* (r, t) eqn (A 6)

Py.tga(r, t) limiting eqn (A 11)
2-5- ., ,~~~~~PP9 (r, t) arbitrary eqn (A 7)

2!i 2.0

.,5

w .,

*0
X .,

0.0 0.5 10 1.5
q= r2/4Dt

Fig. 10. Spatial profiles of the concentrations (area densities) of the activated forms of the
G-protein and the PDE. To allow the exponential integral to be plotted unscaled, the
ordinate plots the protein densities scaled by 4rTD/vRG, and the abscissa plots r2/4Dt (see
eqn (A6)); r is radial distance from the point of isomerization, t is time after the
isomerization, and D is the effective lateral diffusion coefficient given in eqn (A5). Since
the abscissa is plotted in proportion to r2, the area beneath each curve gives a measure
of the total quantity of the respective form. The uppermost (dotted) curve plots g*(r, t)
as the exponential integral given in eqn (A6); the area beneath this curve represents the
total quantity of G*(t). The lowermost (interrupted) curve plots p, - g(r, t) for an
arbitrary binding relation, eqn (A7); the area beneath this curve represents the total
quantity of bound Py - G0(t). The continuous curve plots the limiting form of binding given
in eqn (All ); the area beneath this curve therefore represents the quantity of Py- Ga(t) in
the diffusion limit. The horizontal section of the solid curve represents the original density
of PDE subunits, see eqn (A 13).

Substituting eqns (A6) and (All) into eqn (A7), and integrating p- gj(r, t) 27rdr over all r, we
obtain the limiting value of the coupling gain CGP (i.e. the limiting ratio Py * G. / G*) as

CGP < qO E1(qo) + E2(qo), (A 12)
where the two terms on the right-hand side correspond respectively to the integrals over the two
regions specified in eqn (All), and where qo satisfies

El(qo) = 47TD(2CPDE)/VRG- (A 13)
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From eqn (5.1.14) of Abramowitz & Stegun (1964), eqn (A12) reduces to the simple form

CGP< exp (-qo). (A 14)

Substitution of values
From Table t we obtainD = 0 7+15+0-8um2 s-' = 3/m2s-', and CPDE = 167 ,am-2. If we take

therate of G-protein activation as VRG = 7000s-1 (see p. 751), then 47TD2CPDE / VRG = 1 8, so that
eqn (A13) is satisfied by q0 0 112, and eqn (A14) yields c,GP 089. Smaller values of vRG WoUld
result in the limit onCGP being even closer to unity.

Diffusion limit of both reactions

If, in addition to the assumption that activation of the PDE proceeds at the diffusion limit, we
make the further assumption that generation of the active G-protein likewise proceeds at the
diffusion limit, then it is possible to replace PRG in eqn (A13) with the expression for its limit from
eqn (A2). This leads to the limiting form

E1(qO)= 47r(DRh +DGX +DPDE) 2CPDE / 1,5 (DRh +DG) CGW
26CPDE/CG (A 15)

In order that the activation of PDE by the G-protein should not be wasteful, we require CGP to
be fairly close to unity. To achieve CGP ` 0 9, for example, eqn (A14) indicates that we require

qo <01, which gives Ej(qO) > 1-8. Substitution of this value in eqn (A15) shows that the
requirement will be achieved with CPDE/CG > 1-8/26 1/14. Thus we can say (more or less
independently of membrane fluidity) that a highly 'efficient' activation of PDE can be achieved
when the density of PDE molecules is at least 1/14 the density of the G-protein. This is, in fact,
very close to the ratio of protein densities found experimentally in the amphibian rod outer
segment (Table 1).

Interpretation
In the macroscopic approximation, an inevitable consequence of the ramp-wise generation of

Ga*GTP is that the production of PDE,-G*-GTP also ramps with time. In the limit that
Got* GTP binds rapidly and tightly to all available y-subunits of PDE, the coupling gain CGP has
an upper limit given by eqn (A14) with eqn (A13). For parameters appropriate to the amphibian
rod this limit is close to unity, and we therefore conclude that diffusion per se of proteins at the disc
membrane will not significantly limit the rate of reaction of G.**GTP with the PDE.

Instead, diffusion at the disc surface will be fast enough so that only a small proportion of
GI* GTP molecules remain within a region where their concentration g*(r,t) exceeds the initial
concenitratioin of activatable PDE subuinits, 2CPDE. Hence localized depletion of PDE will not
occur to a significant degree with dim flashes, and as a result the rate of reaction will be determined
approximately by the Law of Mass Action. Finally, in the case that the activation reactions of both
the G-protein and the PDE proceed at their diffusion limits, eqn (A15) shows that a ratio of PDE
to G-protein in the disc membrane of roughly 1/14 will be sufficient to ensure that the coupling gain
is very high.

First-contact time

In the preceding macroscopic analysis we have implicitly assumed the proteins to be distributed
as a continuum. In fact the spacing between molecules is finite, and as a result a small delay in the
reaction will be introduced, corresponding to the first-contact time, i.e. the mean time taken for a
single G,* * GTP to reach the closest molecule of PDE. From the two-dimensional diffusion analysis
used to derive eqn (Al), we obtain the first-encounter time Tpl as

Tpn {3(DG.+DPDE)CPDE}'v (A 16)
analogous to eqn (A2). Substitution of values (see Table 1), gives the first-encounter delay as
TPI 0 9 ms.

Binding according to Law of Mass Action
A second delay stage that needs to be taken into account is introduced because the binding of

G,,* *GTP to the PDE proceeds according to the Law of Mass Action. The formation of the bound
state will therefore be delayed from the time course of the increase in concentration of G,,* *GTP
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by a pseudo-first-order delay, to which we shall assign a time constant TP2. Finally, it is possible
that subsequent to binding of the G,* * GTP a further delay will be involved in the conformational
change required for activation of the PDE*, which we shall denote as T3. We shall assume TP2 and
TP3 to be short.

Time course of activation of PDE*
We can combine the preceding analysis to give the equation for the time course PDE*(t) of

activation of PDE* as

PDE*(t) = o vRPramp(t) * delay(TR, T2c, T2E' TP1,TPV2 TP3, t), (A 17)

where PRP is given by eqn (AIO) with eqns (A14) and (A13), and the term delay(...) is as defined
on p. 723.

APPENDIX B

Solution for the single-photon response
For the single-photon case, longitudinal diffusion in the cytoplasm must be taken into account,

and we need to solve eqn (4.5) which includes the term 02/8x2. We shall ignore end effects by
assuming the outer segment to be infinitely long; we then redefine the origin x=0 as the point of
isomerization, and consider the semi-infinite rod extending in the positive x direction.
Equating the longitudinal flux (obtained from Fick's Law) with the hydrolytic flux at the point

of isomerization (from eqn (4.1)) we obtain the boundary condition on eqn (4.5) as

©cG/8xIx=0 = PDEO*(t) Asub- cG(t)0,o (B 1)
2DX

where PDE*,(t) is the time course of PDE activation per isomerization (see eqn (6.5)). Substituting
the delayed ramp approximation for PDE*,(t) from eqn (3.3), the boundary condition becomes

-cG/1xjx= = VRP/hub2D cG(t)x=Oramp(t-teff). (B 2)

This boundary condition is of the 'radiation' type, where the spatial derivative acG/ax is
expressed in terms of the value of cG at the boundary. To obtain a tractable solution we restrict
consideration to sufficiently early times in the response that we may consider cG(t)x=o to be
unchanged from its initial value, i.e. we have cG(t)x - cGdark. This means that we restrict
consideration to the 'small signal' case, and later we consider the range of times to which this
constrains us.

This approximation reduces the boundary condition to the 'flux' type, where the gradient is a
defined function of time. For a flux in the form of a ramp at t=0, described by

DcG/IxxI,0 = ktcGdark. t > 0, (B 3)

with k a constant, Carslaw & Jaeger (1959) give a solution (§2-9(16)) which reduces to

cG(x, t)
G t = 1-k 2v/(D2 t) 4t i3erfc(x/2V/(Dx t)) (B 4)

CGdark

where imerfc(u) is the repeated integral of the error function.
To obtain the photoresponse we need to substitute this expression into eqn (5.7), taking note of

our revised definition of the origin for x as the point of isomerization. Since we are restricted to
working with small responses, where CG/CGdark t 1, we can make use of the approximation that
1- (1 -z)n nz for z small, where the term (1-z) represents the right hand side of eqn (B4). With
this approximation, integration of eqn (5.7) (over our two semi-infinite sections of rod) gives the
normalised single photon response R,(t) as an expression in terms of i4erfc(O). Noting that i2merfc(0)
- 1/(22mm'). we find that the single-photon response R,(t) reduces to

Rt
L

(B 5)
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Comparison of eqns (B2) and (B3) shows that the constant k may expressed in the form
2kD:,/L = vRpfl8Ub. Insertion of these parameters into eqn (B5), with the time origin shifted to teff,
gives the rising phase of the single-photon response as

Rq (t) [I [vRp.SUb] (t_tetf)2, t > teff_ (B 6)

From the definition of7, in eqn (7.13) this reduces to

R,(t) - I eff
I t >ter (B 7)

It is satisfying to note that eqns (B6) and (B7) in fact represent the same approximation as would
be obtained at early times from eqns (6.8) or (6.10), by putting 'D = 1.

Range of validity
The most important restriction in our derivation of the single-photon response above is that it

is only valid if the fractional change in concentration of cyclic GMP at the point of isomerization
is small, i.e. the simplification in the boundary condition (B3) requires that cG(t),,t0 cG8r. This
simplification places a restriction on the times of validity for the solution, which we now
investigate.

Substituting x= 0 in eqn (B4) and re-writing the equation in terms of the single-photon response
Ro(t), it is possible to express the fractional change in concentration of cyclic GMP at the point of
isomerization as

1 -CG(t)x-O/CGdark R(t) [L/ \DX ]* (B 8)

Substituting n = 3, and values for a toad rod ofL = 60usm and D. = 8#sm2 s-' (see p. 758), we find
that the term in square brackets in eqn (B8) equals 7.5 at t = 500 ms. Since the normalized single-
photon current R,(t) is about 1% at 500 ms in a toad rod (Baylor et al. 1979), eqn (B8) indicates
that the fractional reduction in cyclic GMP concentration at the origin at that time will be less than
10%; elsewhere it will of course be smaller.
Hence, for at least the first 500 ms in the single-photon response of a toad rod, our assumption

that cG(t)x_0 is approximately equal to cGd will be reasonably accurate, and the derivation of eqn
(B6) will therefore also be accurate. In salamander rods, which exhibit a shorter length L = 22#m,
a very similar diffusion coefficient Dxz 7,um2 s'- (Cameron & Pugh, 1990; see p. 64), and a slightly
smaller absolute sensitivity at a fixed early time (i.e. slightly longer T.), substitution of values
shows that the derivation will be accurate for even longer times.

Local saturation
An important corollary of the derivation above is that, during the rising phase of the single-

photon response in amphibian rods, the light-sensitive channels are not blocked completely over a
finite region of the outer segment. Since the fractional reduction in cyclic GMP concentration does
not exceed 10% in the first 500 ms of the response, then the fractional closure of channels at the
point of isomerization will not exceed 27% at that time, i.e. 1-(1-0.1 )3 t 0-27; in a salamander rod
the corresponding figure is 10%. Hence, although it is possible that nearly-complete blockage may
occur at later times in the single-photon response (for the slow responses of toad rods), it certainly
does not occur during the first 500 ms after an isomerization, at room temperature.

Therefore local saturation cannot be used to explain the observed exponential form of the
response-intensity relation in these cells at fixed early times (Lamb et al. 1981). Instead, we
showed in eqn (6.6) that the exponential form may be explained quite simply on the basis of the
known cytoplasmic reactions.

APPENDIX C

Estimation of parameters of the amphibian rod outer segment given in Table 1
Protein concentrations
The protein concentrations (area densities) have been determined by Hamm & Bownds (1986)

for frog rods; see also Pugh & Lamb (1990) and Kahlert & Hofmann (1991).
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Lateral diffusion coefficients of the proteins
Gupta & Williams (1990) have recently measured the lateral diffusion coefficient DRh for

rhodopsin to be 0 73 /,tm2's- in green rods of the toad retina at room temperature, about 80%
higher than the value of caO04,am2s-1 which they and previous workers found in red rods. They
speculate that this apparent difference may result not from a difference in diffusion coefficient per
se, but from the greater number and depth of the incisures in red rods. On this interpretation the
larger value would be correct, and so we shall take the lateral diffusion coefficient for rhodopsin in
amphibian rods to be approximately 0 7 ,um2 s-' at 22 'C.
For the G-protein and the PDE there are no experimental measurements of the diffusion

coefficients of which we are aware. However, measurements on peripheral membrane proteins in a
variety of preparations (see for example Clegg & Vaz, 1985) suggest that for the holo-G-protein
(molecular mass ca 80 kDa) the lateral diffusion coefficient would be almost double that of
rhodopsin in the same membrane; a similar conclusion has recently been drawn by Kahlert &
Hofmann (1991). On this basis, and allowing also for the different molecular weights of the proteins,
our estimated lateral diffusion coefficients for G,,:,B, G<, and PDE are given in Table 1. These values
are, however, only estimates.

Hydrolytic parameters of the PDE
Estimates in the literature for the hydrolytic parameters of the PDE vary widely. In different

studies the hydrolytic velocity kca, of the fully-activated PDE* has been reported to range from 800
to 4000 s-1, while the Michaelis constant Km has been reported to range from 40 /tM to 1 mM. The
ratio of the parameters, kcat/Km, varies over a range of more than 100-fold, from 0-5 to 90 s-5aM1.
Hence this approach does not provide a reliable means of estimating /3sub' defined in eqn (4.4).
Nevertheless, if we take kcat 2000 S-1 and Km 125/aM, and if we also take the cytoplasmic
volume as V,,t. = 1 pl and the buffering power for cyclic GMP as BP - 2 (see below), then eqn (4.4)
yields an order-of-magnitude estimate of /3sub 6 x 10-6 S-.
An alternative approach is to divide /3max' the estimated maximal value of the rate constant ,3(t),

by the estimated total number of PDE subunits in the outer segment, i.e.

/3sub = flmax/(2PDEtot)I (C 1)
where PDEtot is the total number of PDE molecules. From the PDE concentration, of CPDE = 167

we obtain 2 PDEtot 5 x 107for an amphibian rod outer segment. In ten experiments on
voltage-clamped cells exposed to exceedingly bright flashes (not illustrated, but as in Fig. 5), the
highest reliable values of 8(t) had a mean of 168 + 35 s-1 (S.D.), and /3(t) appeared to be asymptoting
towards a limit. The suppression of the circulating current is likely to have prevented the
observation of the true maximum of /(t) and we shall adopt flmax = 300 s-5 as a working value.
For 5 x 105 total subunits of PDE, this corresponds to /sub = 6 x 10-6 s-, the same as the rough
estimate obtained above by the biochemical approach.

Cytoplasmic buffering power
We shall define the incremental buffering power BP of the cytoplasm for cyclic GMP as

BP = dcGtot/dcG (C2)

where cG and cGtot are the free and total concentrations of cyclic GMP; BP is equivalent to the
parameter y of Hodgkin & Nunn (1988). For a single, rapidly binding buffer, with dissociation
constant Kb and total buffer concentration Bto,, we obtain

BP= 1 +BtotKb/(cG +Kb)2 (C 3)

Pugh & Lamb (1990) have reviewed the evidence that the PDE possesses two non-catalytic binding
sites with Kb values of 160 and 830 nm; with cG = 4,UM, approximately 96 and 83% of these sites
will be bound. The PDE membrane density of CPDE = 167 um-2 is equivalent to a cytoplasmic
concentration Btot of 30 aM for each site. Equation (C3) then gives the incremental buffering power
as about 2-3, if the binding is rapid. However, there is evidence (see Pugh & Lamb, 1990, p. 1931)
that the binding-unbinding reaction is slow for at least one of these sites, so that BP 2-3 would
be an upper limit. On the other hand, for large changes in cyclic GMP concentration, this
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incremental approach leads to an underestimate. For example, when cG drops to one-half (so that
the circulating current would have dropped to F = 1/8), the incremental buffering power of the
PDE roughly doubles to BP - 5.

Diffusion in the cytoplasm
Lamb et al. (1981) analysed the diffusion of cytoplasmic messengers around the stack of discs

occupying the outer segment. They showed that radial diffusion is very rapid in comparison with
the time course of the light response, and that the longitudinal diffusion coefficient D, is related to
the free aqueous diffusion coefficient D, by

DX = D (fA/fv) / BP, (C 4)

where fA is the fraction of the cross-sectional area of the outer segment which is available for
longitudinal diffusion, and f, is the fraction of the total outer segment volume occupied by the
cytoplasm. With D 500/tm2 s-' for cyclic GMP (comparable to sucrose), fA/fv 1/30 (see Lamb
et al. 1981) and BP 2, we obtain DX 8Mm2 s-'. This theoretical estimate is consistent with the
recent experimental estimate of 3-10 (mean 7) #Mm2 s- obtained by Cameron & Pugh (1990).
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