Name:

Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. (a) Consider the iteration

$$x_{n+1} = g(x_n) \ n \ge 0.$$

State conditions under which this iteration will converge to  $\alpha$ , a fixed point of g, with order p.

- (b) Use the above to show that (under appropriate conditions) p is exactly 2 when Newton's method is used to find a root of the equation f(x) = 0.
- (c) Consider the equation

$$x = 1 + hf(x)$$

with f(x) continuous for all x. For h = 0, a root is  $\alpha = 1$ . Show that for all sufficiently small h, this equation has a root  $\alpha(h)$ .

HINT: Consider the image of the interval [0, 2] under a suitable mapping.

2. (a) Let  $\mathcal{P}_2 = \operatorname{span}\{1, x, x^2\}$ . Let  $p \in \mathcal{P}_2$  be the minimax approximation to  $f(x) = \cos x + \sin x$  on the interval [0, 1]. Show that

$$|f(x) - p(x)| \le \frac{1}{3!} + \frac{1}{4!}$$

for all  $x \in [0, 1]$ .

HINT: You don't need to actually calculate any minimax approximation in this problem.

(b) Let  $Q = \text{span}\{\sin x, \cos x, \cos 2x\}$ . Let  $q \in Q$  be the minimax approximation to  $f(x) = 2x - x^2$  on the interval [0, 1]. Show that

$$|f(x) - q(x)| \le \frac{2}{3!} + \left(\frac{2}{3}\right) \left(\frac{17}{4!}\right)$$

for all  $x \in [0, 1]$ .

HINT: Again, you don't need to actually calculate any minimax approximation in this problem. The functions in Q can be thought of as their Taylor polynomials + remainder terms. What linear combination of functions in Q will therefore be a good approximation to f(x)?

3. (a) Find quadratic polynomials  $H_0(x)$ ,  $H_1(x)$ ,  $H_2(x)$  such that for any function  $f(x) \in C^{(2)}([0,2])$ , we have

$$H(x) = f(0)H_0(x) + f'(1)H_1(x) + f''(2)H_2(x)$$

satisfies the interpolating conditions

$$H(0) = f(0), H'(1) = f'(1), H''(2) = f''(2).$$

(b) Using the above polynomials  $H_0, H_1, H_2$  (and not any other way), find A, B, C such that the quadrature rule

$$\int_0^2 f(x)dx \approx Q(f) = Af(0) + Bf'(1) + Cf''(2)$$

is exact for all quadratics.

- (c) Find the degree of precision of the above quadrature rule.
- 4. Consider the initial value problem

$$y' = 1 + x + y$$
,  $y(0) = 1$ .

Compute two steps of the Runge-Kutta method defined by the tableau

with constant step size h = 0.1.