Name:

Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

- 1. (a) State the Contraction Mapping Theorem (CMT) for a bounded region in \mathbb{R}^d .
 - (b) Consider the system

$$x = \frac{0.5}{1 + (x+y)^2} \qquad y = \frac{0.5}{1 + (x-y)^2} \ . \tag{1}$$

Identify a region $D \in \mathbb{R}^2$ where the CMT applies and verify that the hypotheses hold.

(Hint: it helps to first sketch the graph of the function $t\mapsto t/(1+t^2)$.)

- (c) Starting with the initial guess $(x_0, y_0) = (0, 0)$ compute the iterates (x_n, y_n) , n = 1, 2 resulted from applying the fixed point methods to (1), and estimate the number of iterations needed for the n^{th} iterate to satisfy $||(x_n, y_n) (x^*, y^*)||_{\infty} \le 10^{-8}$, where (x^*, y^*) is the unique solution of (1) in your set D.
- 2. It is given that for each set of real numbers $x_0 < x_1 \cdots < x_n$ and function $f \in C^{n+1}(\mathbb{R})$ the unique Lagrange interpolation polynomial $p_n(x)$ interpolating f at x_0, \ldots, x_n satisfies

$$f(x) - p_n(x) = f[x, x_0, x_1, \dots, x_n] \prod_{j=0}^n (x - x_j),$$

where $f[x, x_0, ..., x_n]$ denotes the $(n+1)^{\text{th}}$ Newton divided difference of f. Assume f[x, x] = f'(x), f[x, x, y] = (f(x, y) - f[x, x])/(y - x) for $x \neq y$.

(a) Using the above result and assuming the continuity of the divided differences show that for $f \in C^3(\mathbb{R})$ and $x_0 < x_1$ there exists a unique quadratic polynomial q so that

$$q(x_0) = f(x_0), \ q'(x_0) = f'(x_0), \ q(x_1) = f(x_1),$$

and that for $x_0 \le x \le x_1$

$$|f(x) - q(x)| \le \frac{M}{2}(x - x_0)^2(x - x_1)$$
, (2)

with $M = \max_{x_0 \le x \le x_1} |f^{[3]}(x)|$.

(Hint: consider the Langrange polynomial of f at $x_0, x_0 + \varepsilon, x_1$, write the error

formula and let $\varepsilon \to 0$; make sure to justify all the steps and to verify the needed properties.)

(b) Find the quadratic polynomial that satisfies

$$q(1) = 1$$
, $q'(1) = 1/2$, $q(4) = 2$,

and use (2) to estimate $|\sqrt{1.5} - q(1.5)|$.

3. Suppose $\{\psi_0, \psi_1, \psi_2\}$ are orthogonal polynomials on [0,1] with weight w(x) such that for i=0,1,2, we have

$$\int_0^1 w(x)(\psi_i(x))^2 dx = i + 1.$$

Also, suppose the function $f \in C[0, 1]$ is such that

$$\int_0^1 w(x) f(x) \psi_i(x) dx = 2i^2 + 1.$$

- (a) Find r_2^* , the best least squares quadratic approximation to f_*
- (b) What is $||r_2^*||_2 = \left(\int_0^1 w(x)(r_2^*(x))^2 dx\right)^{\frac{1}{2}}$?
- (c) Find $||f r_2^*||_2$ if $||f||_2 = 7$.
- 4. Consider the following numerical method for the initial value problem $y'(x) = f(x, y(x)), y(0) = Y_0$:

$$y_{n+1} = y_n + h[af(x_n, y_n) + bf(x_{n+1}, y_{n+1})] \ (n \ge 0), \ y_0 = Y_0,$$

where we take $a=\frac{1}{3}$ and $b=\frac{2}{3}$. Suppose this method is used to find an approximate solution for the problem where $f(x,y)=\lambda y, Y_0=1$, and $\lambda<0$.

- (a) Show that for a fixed point $\bar{x} = nh$, if $n \to \infty$ (i.e. $h \to 0$) then $y_n \to y(\bar{x})$. (Hint: Derive an explicit formula for y_n .)
- (b) Show that for h fixed, if $n \to \infty$ then $y_n \to 0$.
- (c) What would be the best choice of weights a, b and why? (Hint: Think of how the method may be derived in terms of numerical quadrature.)