MASTER'S COMPREHENSIVE EXAM IN Math 603 -MATRIX ANALYSIS January 2017

- Q1 Solve the following problems.
 - (a) Let S be a subspace of the vector space V, and a vector $z \in V$. Show that z + S is a subspace if and only if $z \in S$. What is the relation between z + S and S when $z \in S$?
 - (b) Let A be a 8×8 diagonalizable complex matrix with three distinct eigenvalues λ_1 , λ_2 , and λ_3 . Let E_i denote the eigenspace associated with λ_i for i=1,2,3. Suppose $\dim E_1 = 1$ and $\dim E_2 = 3$. Determine the algebraic multiplicity of λ_3 , and find the determinant of A^T in terms of λ_1 , λ_2 , and λ_3 . Justify your answers.
- Q2 For $A \in \mathbb{R}^{m \times n}$ and $S \subseteq \mathbb{R}^{n \times 1}$, the set of *n*-dimensional column vectors, the set $A(S) = \{Ax | x \in S\}$ contains all possible products of A with vectors from S. Prove that
 - (a) If S is a subspace of $\mathbb{R}^{n\times 1}$, $\mathbf{A}(S)$ is a subspace of $\mathbb{R}^{m\times 1}$.
 - (b) If S is a subspace of $\mathbb{R}^{n\times 1}$ and $S \cap N(\mathbf{A}) = \{0\}$, where $N(\mathbf{A}) = \{x | \mathbf{A}x = 0\}$, then $\dim \mathbf{A}(S) = \dim(S)$.
- Q3 Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$, with $m \geq n$. Show that AB and BA have the same set of nonzero eigenvalues, that is, show that $\sigma(AB) = \sigma(BA) \cup \{0, ..., 0\}$, where there are m n zeros.
- Q4 Answer the following questions:
 - (a) Is $A=\left(\begin{array}{cc} 5+i & -2i \\ 2 & 4+2i \end{array} \right)$ as normal matrix? Justify.
 - (b) Show that $A \in \mathbb{R}^{n \times n}$ is normal and has real eigenvalues if and only if A is symmetric.
 - (c) Justify: A triangular matrix is normal if and only if it is diagonal.
- $\mathbf{Q}5\,$ Solve the following problems.
 - (a) N is nilpotent of index k when $N^k = 0$ but $N^{k-1} \neq 0$. If N is a nilpotent operator of index n on \mathbb{R}^n , and if $N^{n-1}(y) \neq 0$ for some $y \in \mathbb{R}^n$, show $\mathcal{B} = \{y, N(y), N^2(y), \dots, N^{n-1}(y)\}$ is a basis for \mathbb{R}^n , and then demonstrate that the matrix $[N]_{\mathcal{B}}$ of N with respect to the basis \mathcal{B} has the form

$$[N]_{\mathcal{B}} = J = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}.$$

- (b) If A and B are any two $n \times n$ nilpotent matrices of index n, explain why $A \simeq B$.
- (c) Explain why all $n \times n$ nilpotent matrices of index n must have trace zero and rank n-1.