MASTER'S COMPREHENSIVE EXAM IN Math 600 -REAL ANALYSIS January 2017

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

Q1 Let (M, d) be a metric space and \mathbb{R}^n denote the Euclidean *n*-space with the usual norm/metric. We shall use the metric ρ on $M \times \mathbb{R}^n$ given by

$$\rho((x_1, x_2), (y_1, y_2)) = d(x_1, y_1) + ||x_2 - y_2||$$

where $\|.\|$ is the norm on \mathbb{R}^n .

The graph of a function $f: M \to \mathbb{R}^n$ is the subset of the product space $M \times \mathbb{R}^n$ given by

$$G(f) := \{(x, f(x)) : x \in M\}.$$

- (a) If f is continuous, show that G(f) is closed in $M \times \mathbb{R}^n$.
- (b) If f(M) is bounded in \mathbb{R}^n and G(f) is closed in $M \times \mathbb{R}^n$, show that f must be continuous.
- Q2 Solve the following problems.
 - (a) A set C in a normed vector space V is called convex if for any $x, y \in C$, $\lambda x + (1-\lambda)y \in C$ for all real numbers $\lambda \in [0, 1]$. Show that the closure of a convex set is convex.
 - (b) Let S be a connected set in a metric space (M,d). Suppose S contains more than one point. Show that every point of S is a limit point (also known as an accumulation point) of S.
 - (c) Let A be a bounded set in \mathbb{R}^n with exactly two limit points x, y. Use the open cover definition to show that $A \cup \{x, y\}$ is a compact set.
- Q3 Consider the series

$$\sum_{n=1}^{\infty} \frac{x^2}{n^3} \sin\left(\frac{n^2}{x^2}\right)$$

where $x \in (0, \infty)$.

- (a) Prove that the series converges uniformly on (0, a] for each a > 0.
- (b) Explain why the sum is well defined and continuous on $(0, \infty)$.
- (c) Prove that the series does not converge uniformly on $(0, \infty)$.

- Q4 (a) Provide the definition of equicontinuity for a set S consisting of functions $f:[0,1]\to\mathbb{R}$.
 - (b) Let C([0,1]) be the space of continuous functions $f:[0,1]\to\mathbb{R}$ equipped with the supremum norm.

Define the map $J: C([0,1]) \to C([0,1])$ by

$$J(f)(x) = \int_0^x f(t)dt, \quad x \in [0, 1],$$

for all $f \in C([0,1])$. Prove that if $S \subset C([0,1])$ is bounded (in the sup-norm metric) then its direct image $J(S) \subset C([0,1])$ is both a bounded and equicontinuous subset of C([0,1]).

- (c) With J as defined above, provide an example of a set $S \subset C([0,1])$ such that S is equicontinuous, but J(S) is not equicontinuous.
- Q5 (a) Provide the definition of the Frechet derivative of a map $F: V_1 \to V_2$ where $(V_i, \|.\|_i)$ are normed vector spaces (possibly infinite dimensional).
 - (b) Let C([0,1]) be the space of continuous real valued functions on [0,1] endowed with the supremum norm. Let $k \in C([0,1])$ be a fixed continuous function. Define $F: C([0,1]) \to \mathbb{R}$ by

$$F(f) = \frac{1}{2} \int_0^1 (f(x))^2 dx - \int_0^1 k(x) f(x) dx,$$

for all $f \in C([0,1])$. Show directly from the definition that F is Frechet differentiable on the entire domain and compute the Frechet derivative DF(f).

(c) For the F defined above, find all possible choices of $f \in C([0,1])$ such that DF(f) = 0.