
COMPREHENSIVE EXAMINATION
Math 650 / Optimization / August 2006

(Prepared by Dr. O. Güler)

Name

INSTRUCTIONS: (i) You must solve either Problem 1 or both Problems 2 and 3 (60 points);
(ii) one problem from the set {4, 5} (40 points). Please mark clearly which problems you would like to
be graded - otherwise, Problems 1 and 5 will be graded.

1. Consider the optimization problem (P)

min xyz

s.t. x2 + y2 + z2 ≤ 1,

x + y + z = 1.

(a) Write the Lagrangian function

L(x, y, z;λ0, λ, µ) := λ0xyz +
λ

2
(x2 + y2 + z2 − 1) + µ(x + y + z − 1).

Write down the FJ (Fritz John) conditions for (P), which are necessary for a local minimizer
(x∗, y∗, z∗) of (P). Show that λ0 6= 0, either by citing an appropriate constraint qualification rule
(preferred), or by an explicit, ad–hoc reasoning.

(b) Write down the KKT conditions for (P) which must be satisfied at all local minimizers of (P).

(c) Consider the following three points: {A(1/3, 1/3, 1/3), B(0, 0, 1), C(2/3, 2/3,−1/3). Determine,
with full justification, which of these points satisfy the KKT conditions.

(d) Use second order necessary/sufficient conditions to determine whether the point C is a local mini-
mizer.

(e) (Extra Credit, 6 pts.) Use the equations yz +λx+µ = 0 and xz +λy +µ = 0 appearing in the KKT
conditions to conclude that

either x = y, or z = λ.

Show that similar conditions equalities must also be true for the variable pairs {x, z} and {y, z}.
Prove that these imply that it is impossible to have all three variables x, y, z mutually distinct, that
is, at least two of the three variables x, y, z must be the same, say x = y.

2. Consider the optimization problem (P): min{f(x) : x ∈ C}, where f : Rn → R is a differentiable
function, say with continuous gradient ∇f(x) = (∂f(x)/∂x1, . . . , ∂f(x)/∂xn)T , and C ⊆ Rn is a closed,
convex set.

(a) Show that if x∗ ∈ C is a local minimizer of P , then

〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ C. (1)

(Recall that 〈x, y〉 = xT y is the inner product in Rn.)

(b) Show that if C = {x : Ax = b} is an affine set, where A is an m × n matrix, then (1) is equivalent
to the condition that ∇f(x∗) is orthogonal to N(A), the null space of A. Finally, show that there
exists y such that ∇f(x∗) = AT y.

(c) If f is a convex function and x∗ satisfies (1), then show that x∗ is a global minimizer of f on C.
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3. Consider the quadratic function f(x) := 1
2xT Ax + cT x + α on Rn, where A is any symmetric n × n

matrix, c ∈ Rn, and α ∈ R. Suppose that f(x) ≥ 0, that is, f is non–negative on Rn. Assuming A is a
diagonal matrix, prove the following:

(a) Show that A is positive semi–definite, that is, all diagonal elements of A are non–negative.

(b) Show that f is a convex function.

(c) Show that f achieves its infimum, that is, f has a global minimizer.

(d) Now assume that A is an arbitrary symmetric n × n matrix. Extend the proof of (a)–(c) for this
general case. Hint: reduce to the diagonal case by diagonalizing A!

4. Motzkin’s Transposition Theorem states that the following: Let A,B,C be matrices with the same
number of rows. Then exactly one of the following systems is consistent:

AT x < 0, BT x ≤ 0, CT x = 0, (I)

Ay + Bz + Cw = 0, y ≥ 0, y 6= 0, z ≥ 0. (II)

The following alternative theorem of von Neumann–Morgenstern plays an important role in game theory:
Let D be an n×m matrix. Either there exists a vector x ∈ Rm satisfying

m∑
j=1

dijxj ≤ 0, x ≥ 0,

m∑
j=1

xj = 1, (1)

or there exists a vector y ∈ Rn satisfying

n∑
i=1

dijyi > 0, y ≥ 0,
n∑

i=1

yi = 1, (2)

but not both.

Show, by straightforward manipulation, that von Neumann and Morgenstern follows directly from
Motzkin’s Transposition Theorem.

5. Consider the problem of projecting a point a ∈ Rn onto the unit simplex. Write the problem as the
optimization problem

min{1
2
||x− a||2 : 〈e, x〉 = 1, x ≥ 0}, (P ).

Write the Lagrangian

L(x, λ, µ) :=
||x− a||2

2
− 〈λ, x〉+ µ(〈e, x〉 − 1).

(a) Show that the primal problem is indeed precisely the minimax problem

min
x∈Rn

max
0≤λ∈Rn,µ∈R

L(x, λ, µ).

(b) Show that the (Lagrangian) dual of (P) is the problem

max
0≤λ∈Rn,µ∈R

−1
2
||µe− λ− a||2 − µ +

1
2
||a||2. (D)

Hint: verify that

L(x, λ, µ) =
1
2
||x− a + µe− λ||2 − 1

2
||µe− λ− a||2 − µ +

1
2
||a||2.

(c) What does the Strong Duality Theorem (SDT) say about the problem pair (P)–(D)? State it, and
show that SDT holds true, citing an appropriate theorem if necessary.
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