COMPREHENSIVE EXAMINATION

Math 650 / Optimization / August 2006
(Prepared by Dr. O. Güler)

Name

INSTRUCTIONS: (i) You must solve either Problem 1 or both Problems 2 and 3 (60 points); (ii) one problem from the set $\{4,5\}$ (40 points). Please mark clearly which problems you would like to be graded - otherwise, Problems 1 and 5 will be graded.

1. Consider the optimization problem (P)

$$
\begin{aligned}
\min & x y z \\
\text { s.t. } & x^{2}+y^{2}+z^{2} \leq 1, \\
& x+y+z=1 .
\end{aligned}
$$

(a) Write the Lagrangian function

$$
L\left(x, y, z ; \lambda_{0}, \lambda, \mu\right):=\lambda_{0} x y z+\frac{\lambda}{2}\left(x^{2}+y^{2}+z^{2}-1\right)+\mu(x+y+z-1) .
$$

Write down the FJ (Fritz John) conditions for (P), which are necessary for a local minimizer $\left(x^{*}, y^{*}, z^{*}\right)$ of (P). Show that $\lambda_{0} \neq 0$, either by citing an appropriate constraint qualification rule (preferred), or by an explicit, ad-hoc reasoning.
(b) Write down the KKT conditions for (P) which must be satisfied at all local minimizers of (P).
(c) Consider the following three points: $\{A(1 / 3,1 / 3,1 / 3), B(0,0,1), C(2 / 3,2 / 3,-1 / 3)$. Determine, with full justification, which of these points satisfy the KKT conditions.
(d) Use second order necessary/sufficient conditions to determine whether the point C is a local minimizer.
(e) (Extra Credit, 6 pts.) Use the equations $y z+\lambda x+\mu=0$ and $x z+\lambda y+\mu=0$ appearing in the KKT conditions to conclude that

$$
\text { either } x=y \text {, or } z=\lambda \text {. }
$$

Show that similar conditions equalities must also be true for the variable pairs $\{x, z\}$ and $\{y, z\}$. Prove that these imply that it is impossible to have all three variables x, y, z mutually distinct, that is, at least two of the three variables x, y, z must be the same, say $x=y$.
2. Consider the optimization problem $(\mathrm{P}): \min \{f(x): x \in C\}$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a differentiable function, say with continuous gradient $\nabla f(x)=\left(\partial f(x) / \partial x_{1}, \ldots, \partial f(x) / \partial x_{n}\right)^{T}$, and $C \subseteq \mathbb{R}^{n}$ is a closed, convex set.
(a) Show that if $x^{*} \in C$ is a local minimizer of P, then

$$
\begin{equation*}
\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in C . \tag{1}
\end{equation*}
$$

(Recall that $\langle x, y\rangle=x^{T} y$ is the inner product in \mathbb{R}^{n}.)
(b) Show that if $C=\{x: A x=b\}$ is an affine set, where A is an $m \times n$ matrix, then (1) is equivalent to the condition that $\nabla f\left(x^{*}\right)$ is orthogonal to $N(A)$, the null space of A. Finally, show that there exists y such that $\nabla f\left(x^{*}\right)=A^{T} y$.
(c) If f is a convex function and x^{*} satisfies (1), then show that x^{*} is a global minimizer of f on C.
3. Consider the quadratic function $f(x):=\frac{1}{2} x^{T} A x+c^{T} x+\alpha$ on \mathbb{R}^{n}, where A is any symmetric $n \times n$ matrix, $c \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$. Suppose that $f(x) \geq 0$, that is, f is non-negative on \mathbb{R}^{n}. Assuming A is a diagonal matrix, prove the following:
(a) Show that A is positive semi-definite, that is, all diagonal elements of A are non-negative.
(b) Show that f is a convex function.
(c) Show that f achieves its infimum, that is, f has a global minimizer.
(d) Now assume that A is an arbitrary symmetric $n \times n$ matrix. Extend the proof of (a)-(c) for this general case. Hint: reduce to the diagonal case by diagonalizing A !
4. Motzkin's Transposition Theorem states that the following: Let A, B, C be matrices with the same number of rows. Then exactly one of the following systems is consistent:

$$
\begin{array}{r}
A^{T} x<0, \quad B^{T} x \leq 0, \quad C^{T} x=0 \\
A y+B z+C w=0, \quad y \geq 0, \quad y \neq 0, \quad z \geq 0 \tag{II}
\end{array}
$$

The following alternative theorem of von Neumann-Morgenstern plays an important role in game theory: Let D be an $n \times m$ matrix. Either there exists a vector $x \in \mathbb{R}^{m}$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{m} d_{i j} x_{j} \leq 0, x \geq 0, \sum_{j=1}^{m} x_{j}=1 \tag{1}
\end{equation*}
$$

or there exists a vector $y \in \mathbb{R}^{n}$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i j} y_{i}>0, y \geq 0, \sum_{i=1}^{n} y_{i}=1 \tag{2}
\end{equation*}
$$

but not both.
Show, by straightforward manipulation, that von Neumann and Morgenstern follows directly from Motzkin's Transposition Theorem.
5. Consider the problem of projecting a point $a \in \mathbb{R}^{n}$ onto the unit simplex. Write the problem as the optimization problem

$$
\min \left\{\frac{1}{2}\left|\mid x-a \|^{2}:\langle e, x\rangle=1, x \geq 0\right\}\right.
$$

Write the Lagrangian

$$
L(x, \lambda, \mu):=\frac{\|x-a\|^{2}}{2}-\langle\lambda, x\rangle+\mu(\langle e, x\rangle-1) .
$$

(a) Show that the primal problem is indeed precisely the minimax problem

$$
\min _{x \in \mathbb{R}^{n}} \max _{0 \leq \lambda \in \mathbb{R}^{n}, \mu \in \mathbb{R}} L(x, \lambda, \mu) .
$$

(b) Show that the (Lagrangian) dual of (P) is the problem

$$
\begin{equation*}
\max _{0 \leq \lambda \in \mathbb{R}^{n}, \mu \in \mathbb{R}}-\frac{1}{2}\|\mu e-\lambda-a\|^{2}-\mu+\frac{1}{2}\|a\|^{2} . \tag{D}
\end{equation*}
$$

Hint: verify that

$$
L(x, \lambda, \mu)=\frac{1}{2}\|x-a+\mu e-\lambda\|^{2}-\frac{1}{2}\|\mu e-\lambda-a\|^{2}-\mu+\frac{1}{2}\|a\|^{2} .
$$

(c) What does the Strong Duality Theorem (SDT) say about the problem pair (P)-(D)? State it, and show that SDT holds true, citing an appropriate theorem if necessary.

