COMPREHENSIVE EXAMINATION

Math 650 / Optimization / January 2005
(Prepared by Dr. O. Güler)

Name

INSTRUCTIONS:

You must solve Problem 2 (35 points) and Problem 4 (40 points). You must also solve one problem from the set $\{1,3\}$ (25 points), but please mark clearly which of these two problems you would like to be graded.
1.(a) Show that for all values of a, the function $f(x, y)=x^{3}-3 a x y+y^{3}$ has no global minimizers or global maximizers.
(b) For each value of a, find all the critical point(s) of f and determine their status, that is, determine whether each critical point is a local minimizer, local maximizer, or a saddle point.
2. Consider the problem

$$
\begin{array}{cl}
\min & -x y \\
\mathrm{s.t.} & x+y=8, \\
& x \geq 0, y \geq 0 .
\end{array}
$$

This is the problem of finding the rectangle of maximum area which has perimeter 16 .
(a) write down the FJ (Fritz John) conditions, and show that $\lambda_{0} \neq 0$, that is, KKT (Karush-Kuhn-Tucker) conditions are satisfied at all points satisfying the FJ conditions.
(b) show that the point $(x, y)=(4,4)$ satisfies the KKT conditions.
(c) show that the point $(x, y)=(4,4)$ satisfies the second order sufficient conditions. (Thus, the point $(x, y)=(4,4)$ is a local optimizer to the problem.)
3. Consider the problem

$$
\begin{array}{cc}
\min & x^{2}+(y-1)^{2} \\
\text { s.t. } & -y+\frac{x^{2}}{K} \geq 0 .
\end{array}
$$

For which values of the parameter $K>0$ is the point $\left(x^{*}, y^{*}\right)=(0,0)$ a local minimum? Use second order conditions. It should be useful to sketch the problem.
4. This problem is about duality concerning the projection of a point $a \in \mathbb{R}^{n}$ onto a linear subspace L in R^{n}. It has two parts.
(a) One way to formulate the above problem is to write $L=\{x: A x=0\}$ for an appropriate matrix and to consider the problem

$$
\min \left\{\frac{\|x-a\|^{2}}{2}: A x=0\right\} \quad\left(P_{1}\right)
$$

(i) Formulate the Lagrange dual $\left(D_{1}\right)$ of $\left(P_{1}\right)$. State the Strong Duality Theorem as it applies to the pair $\left(P_{1}\right)$ and $\left(D_{1}\right)$. Prove that either this duality theorem holds true, or argue that it does not hold true.
(ii) Show that the dual problem $\left(D_{1}\right)$ has a geometric interpretation as an orthogonal projection onto the range of A.
(b) A second way to formulate the same problem is

$$
\begin{equation*}
\min \{\|x-a\|: x \in L\} \tag{2}
\end{equation*}
$$

(Here do not represent L in the form $A x=0$; just think of it as an implicit constraint.)
(i) Using the fact that $\|u\|=\max _{\|y\| \leq 1}\langle u, y\rangle$ for any $u \in \mathbb{R}^{n}$, write $\left(P_{2}\right)$ as a minimax problem.
(ii) Write the dual $\left(D_{2}\right)$ of the minimax problem above, and write it as

$$
\max \{\langle a, y\rangle:\|y\| \leq 1, y \in M,
$$

where M is a certain subset of \mathbb{R}^{n}. Give a description of M.

