COMPREHENSIVE EXAMINATION

Math 650 – Optimization August 1999 (Osman Güler)

INSTRUCTIONS:

You must do either Question 1 (25 points); Question 2 or 3 (20 pts.); Question 4 (20 pts.); Question 5 (15 pts.); and Question 6 or 7 (20 pts.). The exam is worth 100 points. You must show all your work for full credit!

1. Consider the optimization problem

min
$$\ln x - y$$

subject to $x^2 + y^2 \le 4$
 $x \ge 1.$

- (a) Sketch the constraint set.
- (b) Write down the Fritz John (FJ) conditions. Show that all points satisfying the FJ conditions must also satisfy the Karush–Kuhn–Tucker (KKT) conditions.
- (c) Write down the KKT conditions. Then determine all points satisfying these conditions. Hint: consider all the different possibilities with λ_i positive or zero.
- (d) Determine whether each KKT point satisfies the second order necessary/sufficient conditions. Consequently use these results to determine the local and global optimizers of the problem.

2. Let Q an $n \times n$ symmetric, positive definite matrix, $a \in \mathbb{R}^n$, and $a \neq 0, c \in \mathbb{R}$ be given. Consider the optimization problem

$$\min \quad \frac{1}{2} \langle x, Qx \rangle$$
subject to $\langle a, x \rangle \leq c.$ (P)

- (a) Show that (P) is a convex programming problem.
- (b) Show that if $c \ge 0$, then $x^* = 0$ is the unique optimal solution to (P).
- (c) Now suppose c < 0. Determine the dual problem to (P).
- (d) Use (c) to determine the optimal solutions to both (D) and (P).
- **3.** Let A an $m \times n$ matrix and $p \in \mathbb{R}^n$. Consider the linear programming problem

min
$$t$$

subject to $Ay = 0$, (P)
 $p^T y - t = -1$,
 $y \ge 0, t \ge 0$.

- (a) Formulate the dual program (D) to (P) as an explicitly written linear program.
- (b) Show that both (P) and (D) have optimal solutions. *Hint: use LP duality.*
- (c) Let v^* be the common optimal objective value of (P) and (D). Show that it follows from (P) and (a) that $0 \le v^* \le 1$. In fact, show that v^* is equal to either zero or one. *Hint:* use complementarity for the last part.
- **4.** (a) Let $C \subseteq \mathbb{R}^n$ be a non-empty convex set such that $C \cap \mathbb{R}^n_+ \subseteq \{0\}$, where $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x \ge 0\}$ is the non-negative orthant. Prove that there exists $p \in \mathbb{R}^n$, $p \ge 0$, $p \ne 0$ such that $\sup_{x \in C} \langle p, x \rangle \le 0$.
- (b) Use an argument similar to the one in (a) to show that there exists $\lambda_1 \ge 0$, $\lambda_2 \ge 0$, not both zero such that

 $\lambda_1 x_1 + \lambda_2 x_2 \ge 0$ for all (x_1, x_2) satisfying $x_1^2 + x_2^2 \le 2$, $(x_1 - 3)^2 + x_2^2 \le 8$, and $x_2 \le \sqrt{7}/2$.

5. Consider the "diamond" D in the plane with vertices at the points (1,0), (0,1), (-1,0) and (0,-1). Describe D as the intersection of four inequalities. Use this to determine the polar D of, D^* where

$$D^* = \{ y \in \mathbb{R}^2 : \langle x, y \rangle \le 1, \forall x \in D \}.$$

Hint: Farkas Lemma.

6. Let $f: C \to \mathbb{R}$ be a convex function where $C \subseteq \mathbb{R}^n$ is an open, convex set. Prove that f is a continuous function on C.

7. Consider the optimization problem (P)

$$\min\{f(x):g_i(x)\leq 0, i=1,\ldots,m\}$$

where f, g_i are continuously differentiable function define on \mathbb{R}^n .

- (a) Write down the Fritz John (FJ) conditions for a local minimizer x^* of (P).
- (b) Suppose that the Mangasarian–Fromovitz (MF) conditions:

$$\exists d \in \mathbb{R}^n$$
 such that $\langle \nabla g_i(x^*), d \rangle < 0, \quad \forall i \in I(x^*),$

where $I(x^*)$ is the set of active constraints at x^* . Show that the KKT conditions are satisfied at x^* .

(c) Suppose that g_i are convex and that (P) satisfies the *Slater condition*, that is, there exists a point x_0 such that $g_i(x_0) < 0$, i = 1, ..., m. Show that the KKT conditions are satisfied at any FJ point x^* . *Hint: show that MF conditions hold true.*