COMPREHENSIVE EXAMINATION

Math 650 - Optimization
August 1999
(Osman Güler)

INSTRUCTIONS:

You must do either Question 1 (25 points); Question 2 or 3 (20 pts.); Question 4 (20 pts.); Question 5 (15 pts .); and Question 6 or 7 (20 pts .). The exam is worth 100 points. You must show all your work for full credit!

1. Consider the optimization problem

$$
\begin{aligned}
\min & \ln x-y \\
\text { subject to } & x^{2}+y^{2} \leq 4 \\
& x \geq 1
\end{aligned}
$$

(a) Sketch the constraint set.
(b) Write down the Fritz John (FJ) conditions. Show that all points satisfying the FJ conditions must also satisfy the Karush-Kuhn-Tucker (KKT) conditions.
(c) Write down the KKT conditions. Then determine all points satisfying these conditions. Hint: consider all the different possibilities with λ_{i} positive or zero.
(d) Determine whether each KKT point satisfies the second order necessary/sufficient conditions. Consequently use these results to determine the local and global optimizers of the problem.
2. Let Q an $n \times n$ symmetric, positive definite matrix, $a \in \mathbb{R}^{n}$, and $a \neq 0, c \in \mathbb{R}$ be given. Consider the optimization problem

$$
\begin{aligned}
\min & \frac{1}{2}\langle x, Q x\rangle \\
\text { subject to } & \langle a, x\rangle \leq c
\end{aligned}
$$

(a) Show that (P) is a convex programming problem.
(b) Show that if $c \geq 0$, then $x^{*}=0$ is the unique optimal solution to (P).
(c) Now suppose $c<0$. Determine the dual problem to (P).
(d) Use (c) to determine the optimal solutions to both (D) and (P).
3. Let A an $m \times n$ matrix and $p \in \mathbb{R}^{n}$. Consider the linear programming problem

$$
\begin{aligned}
\min & t \\
\text { subject to } & A y=0, \\
& p^{T} y-t=-1 \\
& y \geq 0, t \geq 0
\end{aligned}
$$

(a) Formulate the dual program (D) to (P) as an explicitly written linear program.
(b) Show that both (P) and (D) have optimal solutions. Hint: use LP duality.
(c) Let v^{*} be the common optimal objective value of (P) and (D). Show that it follows from (P) and (a) that $0 \leq v^{*} \leq 1$. In fact, show that v^{*} is equal to either zero or one. Hint: use complementarity for the last part.
4. (a) Let $C \subseteq \mathbb{R}^{n}$ be a non-empty convex set such that $C \cap \mathbb{R}_{+}^{n} \subseteq\{0\}$, where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}\right.$: $x \geq 0\}$ is the non-negative orthant. Prove that there exists $p \in \mathbb{R}^{n}, p \geq 0, p \neq 0$ such that $\sup _{x \in C}\langle p, x\rangle \leq 0$.
(b) Use an argument similar to the one in (a) to show that there exists $\lambda_{1} \geq 0, \lambda_{2} \geq 0$, not both zero such that

$$
\lambda_{1} x_{1}+\lambda_{2} x_{2} \geq 0
$$

for all $\left(x_{1}, x_{2}\right)$ satisfying $x_{1}^{2}+x_{2}^{2} \leq 2,\left(x_{1}-3\right)^{2}+x_{2}^{2} \leq 8$, and $x_{2} \leq \sqrt{7} / 2$.
5. Consider the "diamond" D in the plane with vertices at the points $(1,0),(0,1),(-1,0)$ and $(0,-1)$. Describe D as the intersection of four inequalities. Use this to determine the polar D of, D^{*} where

$$
D^{*}=\left\{y \in \mathbb{R}^{2}:\langle x, y\rangle \leq 1, \forall x \in D\right\} .
$$

Hint: Farkas Lemma.
6. Let $f: C \rightarrow \mathbb{R}$ be a convex function where $C \subseteq \mathbb{R}^{n}$ is an open, convex set. Prove that f is a continuous function on C.
7. Consider the optimization problem (P)

$$
\min \left\{f(x): g_{i}(x) \leq 0, i=1, \ldots, m\right\}
$$

where f, g_{i} are continuously differentiable function define on \mathbb{R}^{n}.
(a) Write down the Fritz John (FJ) conditions for a local minimizer x^{*} of (P).
(b) Suppose that the Mangasarian-Fromovitz (MF) conditions:

$$
\exists d \in \mathbb{R}^{n} \text { such that }\left\langle\nabla g_{i}\left(x^{*}\right), d\right\rangle<0, \quad \forall i \in I\left(x^{*}\right),
$$

where $I\left(x^{*}\right)$ is the set of active constraints at x^{*}. Show that the KKT conditions are satisfied at x^{*}.
(c) Suppose that g_{i} are convex and that (P) satisfies the Slater condition, that is, there exists a point x_{0} such that $g_{i}\left(x_{0}\right)<0, i=1, \ldots, m$. Show that the KKT conditions are satisfied at any FJ point x^{*}. Hint: show that MF conditions hold true.

