## Master's Comprehensive Exam in Math 603

## January 2014

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

1. Let $A$ be an $m \times n$ matrix and $B$ be an $m \times p$ matrix. Let $C=[A \mid B]$ be an $m \times(n+p)$ matrix.
(a) Show that $R(C)=R(A)+R(B)$, where $R(\cdot)$ denotes the range of a matrix.
(b) Show that $\operatorname{rank}(C)=\operatorname{rank}(A)+\operatorname{rank}(B)-\operatorname{dim}(R(A) \cap R(B))$.
2. Let $X$ and $Y$ be two distinct $p$-dimensional subspaces of an $n$-dimensional inner product space $V$ with $0<p<n$. Suppose that for any nonzero vectors $x \in X$ and $y \in Y$, the inner product $\langle x, y\rangle \neq 0$.
(a) Show that $\operatorname{dim}(X \cap Y)=0$.
(b) Let $X^{\perp}$ be the orthogonal complement of $X$. Show that $V=X^{\perp} \oplus Y$.
3. Let $X$ and $Y$ be complementary subspaces of $\mathbb{R}^{n}$, i.e., $\mathbb{R}^{n}=X \oplus Y$. Let the $n \times n$ matrix $P$ denote the projector onto $X$ along $Y$. Let $B_{X}$ and $B_{Y}$ be respective bases for $X$ and $Y$.
(a) Express $P$ in terms of $B_{X}$ and $B_{Y}$, and show that the projection matrix $P$ is independent of bases $B_{X}$ and $B_{Y}$.
(b) Suppose $\operatorname{det}(P)=1$. Determine the subspace $Y$.
(c) Show that $\operatorname{rank}(P)=\operatorname{trace}(P)=\operatorname{dim}(X)$.
(d) Show that $\|P\|_{2} \geq 1$ if $P \neq 0$, where $\|\cdot\|_{2}$ denotes the induced matrix 2 -norm. When is $\|P\|_{2}=1 ?$
4. Let $A$ be an $n \times n$ matrix. If there exists $k>n$ such that $A^{k}=0$, then
(a) prove that $I_{n}-A$ is nonsingular, where $I_{n}$ is the $n \times n$ identity matrix;
(b) show that there exists $r \leq n$ such that $A^{r}=0$.
5. Solve the following problems.
(a) Let $T_{i} \in \mathbb{R}^{n \times n}$ be upper triangular matrices with $\left[T_{i}\right]_{i i}=0$ for each $i=1, \ldots, n$. Determine $T_{1} \cdot T_{2} \cdots T_{n}$.
(b) Let $B$ be an $m \times n$ matrix. Show that $A:=I+B^{T} B$ has eigenvalue one (i.e., $1 \in \sigma(A)$ ) if and only if the columns of $B$ are linearly dependent.
(c) Show that a symmetric matrix $A$ is positive semidefinite if and only if there exists a square matrix $P$ such that $x^{T} A x=\sum_{i=1}^{n} z_{i}^{2}(x)$, where $z(x):=\left(z_{1}(x), \ldots, z_{n}(x)\right)^{T}=P x$.
