Master's Comprehensive Exam in Math 603

January 2014

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

- 1. Let A be an $m \times n$ matrix and B be an $m \times p$ matrix. Let C = [A | B] be an $m \times (n + p)$ matrix.
 - (a) Show that R(C) = R(A) + R(B), where $R(\cdot)$ denotes the range of a matrix.
 - (b) Show that $\operatorname{rank}(C) = \operatorname{rank}(A) + \operatorname{rank}(B) \dim(R(A) \cap R(B)).$
- 2. Let X and Y be two distinct p-dimensional subspaces of an n-dimensional inner product space V with $0 . Suppose that for any nonzero vectors <math>x \in X$ and $y \in Y$, the inner product $\langle x, y \rangle \neq 0$.
 - (a) Show that $\dim(X \cap Y) = 0$.
 - (b) Let X^{\perp} be the orthogonal complement of X. Show that $V = X^{\perp} \oplus Y$.
- 3. Let X and Y be complementary subspaces of \mathbb{R}^n , i.e., $\mathbb{R}^n = X \oplus Y$. Let the $n \times n$ matrix P denote the projector onto X along Y. Let B_X and B_Y be respective bases for X and Y.
 - (a) Express P in terms of B_X and B_Y , and show that the projection matrix P is independent of bases B_X and B_Y .
 - (b) Suppose det(P) = 1. Determine the subspace Y.
 - (c) Show that $\operatorname{rank}(P) = \operatorname{trace}(P) = \dim(X)$.
 - (d) Show that $||P||_2 \ge 1$ if $P \ne 0$, where $||\cdot||_2$ denotes the induced matrix 2-norm. When is $||P||_2 = 1$?
- 4. Let A be an $n \times n$ matrix. If there exists k > n such that $A^k = 0$, then
 - (a) prove that $I_n A$ is nonsingular, where I_n is the $n \times n$ identity matrix;
 - (b) show that there exists $r \leq n$ such that $A^r = 0$.
- 5. Solve the following problems.
 - (a) Let $T_i \in \mathbb{R}^{n \times n}$ be upper triangular matrices with $[T_i]_{ii} = 0$ for each i = 1, ..., n. Determine $T_1 \cdot T_2 \cdots T_n$.
 - (b) Let B be an $m \times n$ matrix. Show that $A := I + B^T B$ has eigenvalue one (i.e., $1 \in \sigma(A)$) if and only if the columns of B are linearly dependent.
 - (c) Show that a symmetric matrix A is positive semidefinite if and only if there exists a square matrix P such that $x^T A x = \sum_{i=1}^n z_i^2(x)$, where $z(x) := (z_1(x), \ldots, z_n(x))^T = P x$.