MASTER'S COMPREHENSIVE EXAM IN
 Math 600 -REAL ANALYSIS
 August 2015

Do any three problems. Show all work. Each problem is worth ten points.
Q1 (a) For a subset of a metric space, provide the definitions of sequential compactness and (open cover) compactness. State how these two concepts are related.
(b) Prove that every compact set in a metric space is closed and bounded.
(c) Is the converse in Part (b) true? Justify your answer.

Q2 (a) Define arcwise (=path) connectedness of a set in a metric space. State a relation between arcwise connectedness and connectedness of a set.
(b) Show that the unit circle $\left\{(x, y): x^{2}+y^{2}=1\right\}$ is arcwise connected in \mathbb{R}^{2}.
(c) Is there a non-constant continuous function from \mathbb{R}^{n} to \mathbb{Q} (= the set of all rational numbers)? Justify.

Q3 Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be periodic with period one and on the interval $[0,1]$ it is given by

$$
g(x)=\left\{\begin{aligned}
-2 x+1 & \text { if } 0 \leq x \leq \frac{1}{2} \\
2 x-1 & \text { if } \frac{1}{2} \leq x \leq 1
\end{aligned}\right.
$$

Define f by

$$
f(x):=\sum_{0}^{\infty} \frac{g\left(2^{k} x\right)}{2^{k}} .
$$

(a) Show that the series converges uniformly on \mathbb{R} and that f is continuous.
(b) Find the value of $\int_{0}^{1} f(x) d x$. [Hint: Drawing the graph of g on [0,1$]$ may be helpful.]

Q4 Let $C([0,1])$ be the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ endowed with the supremum norm. Provide the definition of equicontinuity of a subset $K \subset C([0,1])$.
Let $\phi:[0,1] \rightarrow[0,1]$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be (fixed) continuous maps. Let $K \subset C([0,1])$ be equicontinuous.
(a) Prove that the set

$$
\{f \circ \phi \mid f \in K\}
$$

is equicontinuous (here \circ denotes function composition).
(b) Suppose that (in addition to being equicontinuous) K is also bounded. Prove that the set

$$
\{\psi \circ f \mid f \in K\}
$$

is also equicontinuous.
Q5 (a) Provide the definition of the (Frechet) derivative of a map $F: V_{1} \rightarrow V_{2}$ where $\left(V_{i},\|\cdot\|_{i}\right)$ are normed vector spaces (possibly infinite dimensional).
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
\begin{aligned}
& f(x, y)=|y|^{\alpha}, \quad 0 \leq|y| \leq x^{2} \\
& f(x, y)=x^{2}, \quad \text { otherwise }
\end{aligned}
$$

where $\alpha>0$. Prove that at $(0,0)$ the directional derivatives of f exist along any $v \in \mathbb{R}^{2}$ and evaluate these. Find the range of α for which f is (Frechet) differentiable at (0,0), proving your answer.

