MASTER'S COMPREHENSIVE EXAM IN Math 600 -REAL ANALYSIS August 2015

Do any three problems. Show all work. Each problem is worth ten points.

- Q1 (a) For a subset of a metric space, provide the definitions of sequential compactness and (open cover) compactness. State how these two concepts are related.
 - (b) Prove that every compact set in a metric space is closed and bounded.
 - (c) Is the converse in Part (b) true? Justify your answer.
- Q2 (a) Define arcwise (=path) connectedness of a set in a metric space. State a relation between arcwise connectedness and connectedness of a set.
 - (b) Show that the unit circle $\{(x, y) : x^2 + y^2 = 1\}$ is arcwise connected in \mathbb{R}^2 .
 - (c) Is there a non-constant continuous function from \mathbb{R}^n to \mathbb{Q} (= the set of all rational numbers)? Justify.
- **Q**³ Let $g: \mathbb{R} \to \mathbb{R}$ be periodic with period one and on the interval [0, 1] it is given by

$$g(x) = \begin{cases} -2x+1 & \text{if } 0 \le x \le \frac{1}{2} \\ 2x-1 & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Define f by

$$f(x) := \sum_{0}^{\infty} \frac{g(2^k x)}{2^k}.$$

- (a) Show that the series converges uniformly on \mathbb{R} and that f is continuous.
- (b) Find the value of $\int_0^1 f(x) dx$. [Hint: Drawing the graph of g on [0, 1] may be helpful.]
- **Q**4 Let C([0,1]) be the space of continuous functions $f:[0,1] \to \mathbb{R}$ endowed with the supremum norm. Provide the definition of equicontinuity of a subset $K \subset C([0,1])$.

Let $\phi : [0,1] \to [0,1]$ and $\psi : \mathbb{R} \to \mathbb{R}$ be (fixed) continuous maps. Let $K \subset C([0,1])$ be equicontinuous.

(a) Prove that the set

$$\{f \circ \phi \mid f \in K\}$$

is equicontinuous (here \circ denotes function composition).

(b) Suppose that (in addition to being equicontinuous) K is also bounded. Prove that the set

$$\{\psi \circ f \mid f \in K\}$$

is also equicontinuous.

Q5 (a) Provide the definition of the (Frechet) derivative of a map $F: V_1 \to V_2$ where $(V_i, \|.\|_i)$ are normed vector spaces (possibly infinite dimensional).

(b) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$\begin{split} f(x,y) &= |y|^{\alpha}, \ 0 \leq |y| \leq x^2, \\ f(x,y) &= x^2, \ \text{otherwise}, \end{split}$$

where $\alpha > 0$. Prove that at (0,0) the *directional derivatives* of f exist along any $v \in \mathbb{R}^2$ and evaluate these. Find the range of α for which f is (Frechet) differentiable at (0,0), proving your answer.