PhD COMPREHENSIVE EXAM IN PARTIAL DIFFERENTIAL EQUATIONS

August 2012

Do any 3 of the 4 problems. Show all work. Each problem is worth ten points.

Q1. Describe the solutions $u(x, t)$ to Burger's equation

$$
\begin{array}{ll}
u_{t}+u u_{x}=0, & (x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0)=g(x), & x \in \mathbb{R}
\end{array}
$$

for (a)

$$
g(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

and (b)

$$
g(x)= \begin{cases}1 & \text { if } x<0 \\ 0 & \text { if } x>0\end{cases}
$$

Q2. On a bounded domain $\Omega \subset \mathbb{R}^{n}$, let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a solution to

$$
\begin{array}{ll}
\Delta u-\mu^{2} u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}
$$

where $\partial \Omega$ is the smooth boundary of Ω.
(a) Show $\max _{\Omega}|u| \leq \frac{1}{\mu^{2}} \max _{\Omega}|f|$.
(b) Use the result in part (a) to show that the smooth solutions of the problem

$$
\begin{array}{ll}
\Delta u-\mu^{2} u=f & \text { in } \Omega \\
u=g & \text { on } \partial \Omega
\end{array}
$$

are unique.

Q3. For bounded domain $\Omega \subset \mathbb{R}^{2}$ with smooth boundary $\partial \Omega$, consider the initial/boundary value problem for $u(x, t)$:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\Delta u & \text { in } \Omega \times(0, \infty) \\
\frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega \times(0, \infty) \\
u(x, 0)=f(x) & x \in \Omega
\end{array}
$$

where $\partial u / \partial \nu$ is the derivative of u in the outward normal direction at the boundary.
With $u(x, t)$ being a smooth solution,
(a) Assume $\int_{\Omega} f(x) d x=0$. Show that $\int_{\Omega} u(x, t) d x=0$ for all $t>0$.
(b) Show that $\int_{\Omega} u(x, t)^{2} d x$ decays exponentially as $t \rightarrow \infty$.

Q4. Consider $u_{t t}-u_{x x}=0$ on the quarter plane $x>0, t>0$, with $u(0, t)=0$ for $t>0$. Let $u(x, 0)=\max \{0,(x-1)(3-x)\}$, which has its peak at $x=2$.
(a) By following the characteristics of the wave equation, at what location(s) will the 'initial data at $x=2$ ' find itself when $t=3$?
(b) What is the domain of dependence of the point $(x, t)=(1,10)$?
(c) What is the region of influence of the point $(x, t)=(10,0)$?

