MASTER'S COMPREHENSIVE EXAM IN Math 600 -REAL ANALYSIS August 2013

Do any three problems. Show all work. Each problem is worth ten points.

1. Let (M,d) be a metric space. Given a set $A\subseteq M$ and $\epsilon>0$, the ϵ -dilation of A is defined by

$$A_{\epsilon} = \{ y \in M : \exists x \in A \text{ such that } d(x, y) < \epsilon \}.$$

- (i) Show that A_{ϵ} is an open set.
- (ii) Show that

$$\bigcap_{\epsilon>0}A_\epsilon$$

is the closure of A.

- 2. (i) Define 'sequential compactness' of a set in a metric space. Is this equivalent to the (open cover) compactness? Answer 'yes' or 'no'.
 - (ii) Show that if A and B are compact in (M,d), then $A \times B$ is compact in $(M \times M, \rho)$, where ρ is the product metric on $M \times M$ defined by $\rho((x,y),(u,v)) = d(x,u) + d(y,v)$ is sequentially compact.
 - (iii) If K is compact in \mathbb{R}^n (with the usual metric), show that the set $\{tx + (1-t)y : x, y \in K, 0 \le t \le 1\}$ is also compact.
- 3. (i) State the definition of connectedness of a set in a metric space.
 - (ii) What is known about the continuous image of a connected set?
 - (iii) Suppose C is a nonempty connected set in a metric space (M,d) such that every element of M can be joined to some element of C by an arc in M. Show that M is also connected. [Recall that an arc in (M,d) joining x and y is a continuous function $\phi: [0,1] \to (M,d)$ such that $\phi(0) = x$ and $\phi(1) = y$.]
- 4. (i) State the definition of uniform convergence of a sequence of real valued functions on a set $A \subseteq R$.

(ii) Consider the series

$$\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$$

on R. Show that the series converges uniformly and absolutely on every interval of the form [-a, a] where a > 0.

- (iii) Discuss the continuity and differentiability of the sum on R.
- 5. (i) State the definition of differentiability for a map $f: \mathbb{R}^n \to \mathbb{R}^m$ at a point.
 - (ii) Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable with $||Df(c)|| \leq L$ for all $c \in \mathbb{R}^n$, where Df(c) denotes the derivative of f at c. Show that for all $a, b \in \mathbb{R}^n$, $|f(b) f(a)| \leq L||b a||$. [Hint: Consider $g: [0,1] \to \mathbb{R}$, g(t) = f((1-t)a+tb)) and apply the calculus mean value theorem.]
 - (iii) Verify Item (ii) for the function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) = \sum_{1}^{n} \sin^2 x_i$.