Math 630 Comprehensive Examination

January, 2023
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. Assume that a matrix A has a nonsingular, unit $L U$ factorization (L unit lower triangular and U upper triangular and nonsingular). Also assume that the factorization is obtained using Type III operations, which allows to replace row j by a linear combination of itself plus a multiple of another row i with $i<j$.
(a) Explain (briefly) how you would compute A^{-1} efficiently by using the $L U$ factorization of A.
(b) Show that for $k=1,2, \ldots$, the leading principal submatrix A_{k} is nonsingular.
(c) If the $(k+1)^{\text {th }}$ leading principal submatrix has the block structure

$$
A_{k+1}=\left(\begin{array}{cc}
A_{k} & b \\
c^{T} & \alpha_{k+1}
\end{array}\right)
$$

express the factors L_{k+1} and U_{k+1} in terms of the factors L_{k} and U_{k} (and their inverses) of A_{k}, the vectors b and c, as well as the pivot $\alpha_{k+1}-c^{T} A_{k}^{-1} b$. Explain why the pivot is nonzero, and why all the pivots must be nonzero when A has a nonsingular, unit $L U$ factorization.
(d) If A is a matrix that contains only integer entries and all of its pivots (diagonal entries in U) are 1 , explain why A^{-1} must also be an integer matrix.
2. Consider a nonsingular system $A x=b$, for which there is some uncertainty in both A and b. More precisely, the computed solution \widetilde{x} satisfies $(A-E) \widetilde{x}=b-e$, where $\left\|A^{-1} E\right\|<1$ for some matrix norm such that $\|I\|=1$. Show that

$$
\frac{\|x-\widetilde{x}\|}{\|x\|} \leq \frac{\kappa}{1-\kappa \frac{\|E\|}{\|A\|}}\left(\frac{\|e\|}{\|b\|}+\frac{\|E\|}{\|A\|}\right),
$$

where $\kappa=\|A\|\left\|A^{-1}\right\|$, and $\|v\|$ is a vector norm of a vector v that is compatible with the matrix norm in the sense that $\|A v\| \leq\|A\| \cdot\|v\|$.
Hint: If $B=A^{-1} E$, then $A-E=A(I-B)$ and $\alpha=\|B\|<1 \Rightarrow\left\|B^{k}\right\| \leq\|B\|^{k} \rightarrow 0 \Rightarrow$ $B^{k} \rightarrow 0$, so the Neumann series expansion yields $(I-B)^{-1}=\sum_{i=0}^{\infty} B^{i}$ so that

$$
\left\|(I-B)^{-1}\right\| \leq \frac{1}{1-\|B\|}
$$

and utilize the identity $I-(I-B)^{-1}=-B(I-B)^{-1}$.
3. For (a) and (b) consider the Jacobi and Gauss-Seidel iterations for 2×2 systems of the form $A x=b$ with

$$
A=\left(\begin{array}{ll}
1 & \alpha \\
\beta & 1
\end{array}\right)
$$

where $\alpha, \beta \in \mathbb{R}$.
(a) Find a necessary and sufficient condition on the numbers α, β so that for any $b \in \mathbb{R}^{2}$, the Jacobi method converges to the solution of the system $A x=b$.
(b) Find a necessary and sufficient condition on the numbers α, β so that for any $b \in \mathbb{R}^{2}$, the Gauss-Seidel method converges to the solution of the system $A x=b$.
(c) Show that if an $n \times n$ matrix A is nonsingular and upper triangular, then the Jacobi method converges in finitely many steps (assuming exact arithmetic).
Hint: What kind of a matrix is the error propagator matrix?
4. Let

$$
A=\left(\begin{array}{rr}
8 & -18 \\
3 & -7
\end{array}\right) .
$$

(a) Compute the eigenvalues λ_{1}, λ_{2} of A (note that they are integers), with the notation convention that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right|$. Starting with initial guess $q^{(0)}=[1,1]^{T}$, compute two steps of the power method to find eigenvector approximations $q^{(1)}, q^{(2)}$. Use the Rayleigh quotient to compute an approximation $\lambda_{1}^{(2)}$ of the dominant eigenvalue λ_{1} based on $q^{(2)}$. Estimate the convergence rate of $\lambda_{1}^{(n)}$ to λ_{1} as $n \rightarrow \infty$.
(b) Also starting with $p^{(0)}=[1,1]^{T}$, compute two steps $p^{(1)}, p^{(2)}$ of the inverse iteration method with shift $\lambda=-2$. Use the Rayleigh quotient to compute the approximate eigenvalue $\mu_{1}^{(2)}$ based on $p^{(2)}$. If $p^{(n)}$ is the $n^{\text {th }}$ iterate of the shifted inverse iteration and $\mu_{1}^{(n)}$ is the corresponding Rayleigh quotient (still computed with A), what is

$$
\mu_{1}=\lim _{n \rightarrow \infty} \mu_{1}^{(n)} ?
$$

Estimate the convergence rate of $\left|\mu_{1}-\mu_{1}^{(n)}\right|$.

