Math 620 Comprehensive Examination

January, 2023
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. (a) The three-point Gaussian quadrature rule on $[-1,1]$ (with weight 1) is given by

$$
\int_{-1}^{+1} f(x) d x \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

Use a change of variable to find the nodes and weights for

$$
\int_{0}^{8} g(t) d t \approx w_{1} g\left(t_{1}\right)+w_{2} g\left(t_{2}\right)+w_{3} g\left(t_{3}\right)
$$

the corresponding rule on $[0,8]$.
(b) A certain quadrature rule for approximating $\int_{a}^{b} f(x) d x$ has error estimate given by

$$
E(f)=C(b-a)^{6} f^{(5)}(\eta)
$$

where η is a point in $[a, b]$. What is the degree of precision of this rule? Justify your answer.
(c) The composite version of this rule is used on $[a, b]$ by dividing the interval into n subintervals. Let $h=(b-a) / n$. What is the order of convergence (i.e. m in $\left.O\left(h^{m}\right)\right)$ for the method? Prove your result.
(d) This composite version is applied to find an approximation to $I(g)=\int_{2}^{3} g(x) d x$, first by dividing $[2,3]$ into 10 subintervals, then 20 , then 40 . It is observed that the error for these approximations is $0.1,0.025$, and 0.00625 respectively. What order of convergence does this represent? What does this suggest to you about the function g ?
2. (a) Consider the following method for the ODE $y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=Y_{0}$:

$$
y_{n+1}=y_{n}+\frac{h}{12}\left(23 f\left(x_{n}, y_{n}\right)-16 f\left(x_{n-1}, y_{n-1}\right)+5 f\left(x_{n-2}, y_{n-2}\right)\right) .
$$

Here $x_{n}=x_{0}+n h$ and $y_{0}=Y_{0}$. Let $T_{n}(Y)$ be the truncation error. Use a theorem (or Taylor series approximations) to find the order m if $\frac{1}{h} T_{n}(Y)$ is $O\left(h^{m}\right)$.
(b) Suppose the initial conditions are approximated with enough accuracy. Will the method converge? If so, why, and at what order?
(c) The backward Euler method is given by $y_{n+1}=y_{n}+h f\left(x_{n+1}, y_{n+1}\right)$. Give one advantage and one disadvantage it has over the usual Euler method.
3. Consider the following non-standard interpolation problem: given a C^{1} function $f:\left[x_{0}, x_{1}\right] \rightarrow$ \mathbb{R}, find a quadratic polynomial p so that

$$
\begin{equation*}
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \quad p^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right) . \tag{1}
\end{equation*}
$$

(a) Show that the problem (1) has a unique solution.
(b) Assuming $x_{0}<x<x_{1}$, derive an error formula (a reasonable and correct upper bound) for $|f(x)-p(x)|$ under the assumption that the function f is sufficiently many times differentiable. If $x_{1}-x_{0}=h$, express the approximation order as $O\left(\left\|f^{[r]}\right\|_{\infty} h^{p}\right)$ with p an appropriate power, and r the appropriate derivative.

Hint: Try to take advantage of the "more standard" relationship between p^{\prime} and f^{\prime}.
4. Halley's method for solving the nonlinear equation $f(x)=0$ for a C^{3} function f with $f^{\prime}(x)>0$ is based on applying Newton's method to the equation $F(x)=0$ with

$$
F(x)=\frac{f(x)}{\sqrt{f^{\prime}(x)}}
$$

It results in the iteration

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{2\left(f^{\prime}\left(x_{n}\right)\right)^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)} . \tag{2}
\end{equation*}
$$

(a) Apply the iteration (2) to the equation

$$
e^{x}=b
$$

to derive a fixed point iteration (i.e., an iteration of the form $\left.x_{n+1}=g\left(x_{n}\right)\right)$ that converges to $x^{*}=\ln b$. Simplify the expression of g in this iteration as much as possible. With $b=5$ and $x_{0}=1$ compute (numerically) x_{1} and x_{2} (keep at least 5 significant digits). What is the actual error e_{2} (it should be less than 10^{-5} if your iteration is correct)?
(b) Explain briefly what is means for a fixed point iteration to be order- p convergent, and what is a practical way of proving order- p convergence. Does order- p convergence imply convergence for all initial values?
(c) Show that your iteration at (a) converges with order 3 to $\ln b$. (It can be shown that Halley's method is of order 3 in general; if that's what you prefer, you can show the general case.)
(d) Show that if $A \leq \ln b \leq B$, then $g([A, B]) \subseteq[A, B]$ and that g is contractive on $[A, B]$. Conclude that your iteration is globally convergent, i.e., for any $x_{0} \in \mathbb{R}, x_{n} \rightarrow \ln b$. Hint: Show that $g^{\prime}(x) \geq 0$ first.

