Math 630 Comprehensive Examination

January, 2022
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. (a) Compute the "full" singular value decomposition $A=U \Sigma V^{T}$ of the matrix

$$
A=\left[\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 2 & 2 \\
4 & -2 & 4 \\
0 & 0 & 0
\end{array}\right],
$$

Summarize your results clearly and check them!
(b) If you wish to find the singular value decomposition of the transpose A^{T} of A, can you guess the $A^{T}=\tilde{U} \tilde{\Sigma} \tilde{V}^{T}$ instead of computing it?
2. (a) Explain how would you solve a system $A x=b$ if you knew the LU-factorization of A.
(b) Assume that L_{k} is that matrix of multipliers used to "introduce" zeros in column k of A. Using only matrix-algebra operations (addition, multiplication, inversion), write L_{k} using the identity matrix I, its column e_{k}, and the vector with multipliers $\ell_{k}=$ $\left[0 \ldots 0 \ell_{k+1, k} \ldots \ell_{n, k}\right]^{T}$. (Vectors are regarded as matrices with one column.)
(c) Find (state explicitly) L_{k}^{-1} and show that $L_{k} L_{k}^{-1}=I$.
3. (a) Describe the Householder reflector operator, and show that for any vectors $x, y \in \mathbb{R}^{n}$ with $\|x\|_{2}=\|y\|_{2} \neq 0, x \neq y$, there exists a Householder reflector R so that $R x=y$.
(b) Compute the $Q R$ factorization of the matrix

$$
A=\left[\begin{array}{rr}
2 & -2 \\
-3 & 0 \\
6 & 1
\end{array}\right]
$$

using Householder reflectors. You may leave Q as a product of Householder transforms (by showing the vectors involved).
(c) Given $b=[1,-1,1]^{T} \in \mathbb{R}^{3}$ and the matrix A from (b), solve the least squares (LS) problem

$$
\min _{x \in \mathbb{R}^{2}}\|A x-b\|_{2}^{2}
$$

You may use either the method of normal equations or the $Q R$ factorization. Explain (briefly) why the LS problem has a unique solution.
4. (a) State the algorithm of the power method. Explain how you prevent overflow/underflow.
(b) Let

$$
A=\left[\begin{array}{cc}
0.99 & 0 \\
0 & 1
\end{array}\right] .
$$

Find the eigenvalues of A and the associated eigenvectors.
(c) Carry out power iteration starting with $q_{0}=[11]^{T}$. Derive a general expression for q_{j}.
(d) How many iterations are required in order to obtain $\left\|q_{j}-v_{1}\right\|_{\infty} /\left\|v_{1}\right\|_{\infty}<10^{-6}$?

