Math 620 Comprehensive Examination

January, 2022

Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

- (a) Describe (at least) three methods for the computation of an interpolating polynomial to a given dataset. Discuss their relative advantages, for instance, relative to computational cost or applicability or purpose of use. Hint: Start by clearly introducing notation for the problem to be solved.
 - (b) Compute the interpolating polynomial to the data

0	4	2	-2
1	2	0	2

Simplify your result to the form of a standard polynomial.

2. Consider the general problem of solving an equation of the form

$$f(x) = 0, (1)$$

where $f : \mathbb{R} \to \mathbb{R}$ is a sufficiently smooth function, and assume x^* is a solution, that is, $f(x^*) = 0$.

- (a) Describe what it means for an iterative scheme for solving (1) to be of order r, with $r \ge 1$, and give examples (without many details) of iterative methods of various orders (not necessary integer orders).
- (b) Assume the equation (1) is transformed into an iteration of the form $x_{n+1} = g(x_n)$, with g being a twice continuously differentiable function that satisfies

$$g(x^*) = x^*, \ g'(x^*) = 0, \ g''(x^*) \neq 0.$$

Show that the above method is exactly of order r = 2, and explain under what conditions on the initial value x_0 the iterates will converge to x^* .

(c) Use the result at (b) (by identifying the corresponding function g) to show that Newton's method for solving (1) is of order r = 2 if $f'(x^*) \neq 0$, and of order r = 1 if $f'(x^*) = 0$ and $f''(x^*) \neq 0$.

Hint: For the last statement you may use the fact that $f(x^*) = f'(x^*) = 0$ and $f''(x^*) \neq 0$ imply that there exists a sufficiently smooth function h so that $f(x) = (x - x^*)^2 h(x)$ with $h(x^*) \neq 0$.

- 3. In the following, \mathcal{P}_n denotes the set of polynomials of degree $\leq n$.
 - (a) Let $r_n^* \in \mathcal{P}_n$ be the best least squares approximation to f, a function that is continuous on I = [-1, 1]. Show that

$$\int_{I} r_n^*(x) p(x) \, dx = \int_{I} f(x) p(x) \, dx$$

for all $p \in \mathcal{P}_n$.

(b) The three-point Gauss-quadrature rule on I = [-1, 1] (with weight 1) is given by

$$\int_{I} f(x) \, dx \approx \frac{5}{9} f(-\sqrt{\frac{3}{5}}) + \frac{8}{9} f(0) + \frac{5}{9} f(\sqrt{\frac{3}{5}}).$$

Find the corresponding rule on the interval [0, 4] (i.e. give the weights and nodes).

(c) Let h = (b - a)/2, and denote Simpson's rule for approximating $I(f) = \int_a^b f(x) dx$ by $I_h(f)$. We know this has the error estimate

$$I(f) - I_h(f) = -\frac{h^5}{90}f^{(4)}(\eta)$$

where η is some point in [a, b]. Use this to show that the rule's degree of precision is 3.

4. Consider the ordinary differential equation

$$y'(x) = f(x, y(x)), \ y(x_0) = Y_0.$$
 (2)

- (a) Replace the derivative term in (2) by two different numerical difference schemes to obtain two common one-step methods for solving ODEs - one explicit, and one implicit. (Each should have uniform step size h. You don't have to give the truncation error.)
- (b) Suppose $f(x, y) = \lambda y$ ($\lambda < 0$ is real) and $Y_0 = 1$. For each of your methods, derive a formula for the approximate solution y_n (i.e. the approximation to the exact solution at $x_n = nh$).
- (c) We know that the exact solution of the ODE in part (b) above tends to 0 as $x \to \infty$. Let *h* be fixed, and let $n \to \infty$ (so that $x_n \to \infty$). Under what conditions on *h* does $y_n \to 0$ for each of the two schemes?