Math 620 Comprehensive Examination

January, 2022
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. (a) Describe (at least) three methods for the computation of an interpolating polynomial to a given dataset. Discuss their relative advantages, for instance, relative to computational cost or applicability or purpose of use. Hint: Start by clearly introducing notation for the problem to be solved.
(b) Compute the interpolating polynomial to the data

0	4	2	-2
1	2	0	2

Simplify your result to the form of a standard polynomial.
2. Consider the general problem of solving an equation of the form

$$
\begin{equation*}
f(x)=0, \tag{1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a sufficiently smooth function, and assume x^{*} is a solution, that is, $f\left(x^{*}\right)=0$.
(a) Describe what it means for an iterative scheme for solving (1) to be of order r, with $r \geq 1$, and give examples (without many details) of iterative methods of various orders (not necessary integer orders).
(b) Assume the equation (1) is transformed into an iteration of the form $x_{n+1}=g\left(x_{n}\right)$, with g being a twice continuously differentiable function that satisfies

$$
g\left(x^{*}\right)=x^{*}, \quad g^{\prime}\left(x^{*}\right)=0, \quad g^{\prime \prime}\left(x^{*}\right) \neq 0
$$

Show that the above method is exactly of order $r=2$, and explain under what conditions on the initial value x_{0} the iterates will converge to x^{*}.
(c) Use the result at (b) (by identifying the corresponding function g) to show that Newton's method for solving (1) is of order $r=2$ if $f^{\prime}\left(x^{*}\right) \neq 0$, and of order $r=1$ if $f^{\prime}\left(x^{*}\right)=0$ and $f^{\prime \prime}\left(x^{*}\right) \neq 0$.
Hint: For the last statement you may use the fact that $f\left(x^{*}\right)=f^{\prime}\left(x^{*}\right)=0$ and $f^{\prime \prime}\left(x^{*}\right) \neq$ 0 imply that there exists a sufficiently smooth function h so that $f(x)=\left(x-x^{*}\right)^{2} h(x)$ with $h\left(x^{*}\right) \neq 0$.
3. In the following, \mathcal{P}_{n} denotes the set of polynomials of degree $\leq n$.
(a) Let $r_{n}^{*} \in \mathcal{P}_{n}$ be the best least squares approximation to f, a function that is continuous on $I=[-1,1]$. Show that

$$
\int_{I} r_{n}^{*}(x) p(x) d x=\int_{I} f(x) p(x) d x
$$

for all $p \in \mathcal{P}_{n}$.
(b) The three-point Gauss-quadrature rule on $I=[-1,1]$ (with weight 1) is given by

$$
\int_{I} f(x) d x \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

Find the corresponding rule on the interval $[0,4]$ (i.e. give the weights and nodes).
(c) Let $h=(b-a) / 2$, and denote Simpson's rule for approximating $I(f)=\int_{a}^{b} f(x) d x$ by $I_{h}(f)$. We know this has the error estimate

$$
I(f)-I_{h}(f)=-\frac{h^{5}}{90} f^{(4)}(\eta)
$$

where η is some point in $[a, b]$. Use this to show that the rule's degree of precision is 3 .
4. Consider the ordinary differential equation

$$
\begin{equation*}
y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=Y_{0} \tag{2}
\end{equation*}
$$

(a) Replace the derivative term in (2) by two different numerical difference schemes to obtain two common one-step methods for solving ODEs - one explicit, and one implicit. (Each should have uniform step size h. You don't have to give the truncation error.)
(b) Suppose $f(x, y)=\lambda y\left(\lambda<0\right.$ is real) and $Y_{0}=1$. For each of your methods, derive a formula for the approximate solution y_{n} (i.e. the approximation to the exact solution at $x_{n}=n h$).
(c) We know that the exact solution of the ODE in part (b) above tends to 0 as $x \rightarrow \infty$. Let h be fixed, and let $n \rightarrow \infty$ (so that $x_{n} \rightarrow \infty$). Under what conditions on h does $y_{n} \rightarrow 0$ for each of the two schemes?

