Math 630 Comprehensive Examination

January, 2021
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. (a) Show that for all $x \in \mathbb{R}^{n}$

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2} \leq n\|x\|_{\infty}
$$

Hint: The inequality $\|x\|_{2} \leq\|x\|_{1}$ becomes obvious on squaring both sides. The inequality $\|x\|_{1} \leq \sqrt{n}\|x\|_{2}$ is obtained by applying the Cauchy-Schwarz inequality to the vectors x and $y=[1,1, \ldots, 1]^{T}$.
(b) Make systematic use of the inequalities from part (a) to prove that for all $A \in \mathbb{R}^{n \times n}$

$$
\|A\|_{1} \leq \sqrt{n}\|A\|_{2} \leq n\|A\|_{1}
$$

2. Assume A is nonsingular, $\|\delta A\| /\|A\|<1 / \kappa(A), b \neq 0, A x=b$, and

$$
(A+\delta A)(x+\delta x)=b+\delta b .
$$

The symbol $\|\cdot\|$ denotes either a vector norm or a compatible matrix norm, respectively, depending to what object it is applied.
(a) Derive the equality

$$
\delta x=A^{-1}(\delta b-\delta A(x+\delta x))
$$

and prove the inequality

$$
\frac{1}{\|A\|} \leq \frac{\|x\|}{\|b\|}
$$

(b) Use part (a) to show that

$$
\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right)}{1-\kappa(A) \frac{\|\delta A\|}{\|A\|}} .
$$

3. (a) Show that the matrices \hat{Q} and \hat{R} specify a (condensed) QR-factorization of the given matrix A. Make sure to check all relevant properties of all matrices.

$$
A=\left[\begin{array}{rr}
0 & 1 \\
0 & -1 \\
1 & 1
\end{array}\right], \quad \hat{Q}=\left[\begin{array}{rr}
0 & \frac{\sqrt{2}}{2} \\
0 & -\frac{\sqrt{2}}{2} \\
1 & 0
\end{array}\right], \quad \hat{R}=\left[\begin{array}{rr}
1 & 1 \\
0 & \sqrt{2}
\end{array}\right] .
$$

(b) Derive, how a QR-factorization is used to solve the least squares problem given by $A x=b$.
(c) Find the solution to the least squares problem $A x=b$ with A from above and $b=$ $[3,1,-2]^{T}$.
4. Let A be the non-symmetric matrix

$$
A=\left[\begin{array}{rr}
1 & \rho \\
-\rho & 1
\end{array}\right], \quad \rho>0
$$

and consider iterative methods for solving the system

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

with $b=[1,2]^{T}$.
(a) With $x_{0}=[0,0]^{T}$ as initial guess, compute the iterates x_{1} and x_{2} for the Jacobi and the Gauss-Seidel iterations, respectively, for solving the system (1).
(b) Compute the error propagators for the Jacobi and the Gauss-Seidel methods, respectively, that is, the matrices $E=E_{J}$ or $E=E_{G S}$ for which the error vectors satisfy $e_{n+1}=E e_{n}$.
(c) For each of the two methods determine all the values of ρ for which the method converges. Compare the convergence rates of the Jacobi and the Gauss-Seidel methods, using the spectral radii of the error propagators as proxies.

