Math 620 Comprehensive Examination

January, 2021
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. Consider the model of a binary computer number system, whose non-zero (and non-special) numbers are modeled by

$$
\tilde{x}=(-1)^{s}\left(b_{0} \cdot b_{1} b_{2} \ldots b_{p-1}\right)_{2} 2^{E}
$$

with sign bit $s \in\{0,1\}$, binary digits $b_{i} \in\{0,1\}, i=0,1, \ldots, p-1$, and exponent $E_{\text {min }} \leq$ $E \leq E_{\max }$, where $p, E_{\min }, E_{\max }$ are the given parameters of the number system.
(a) The normalized numbers \tilde{x} are defined by $E_{\min } \leq E \leq E_{\max }$ and $b_{0} \neq 0$ being the first non-zero digit of the number. Determine the formulas for the smallest and largest positive normalized numbers.
(b) The de-normalized numbers \tilde{x} are defined by $E=E_{\min }$ and the requirement that not all digits $b_{i}, i=0,1, \ldots, p-1$, are zero. Determine the formulas for the smallest and largest positive de-normalized numbers.
(c) Consider the very small number system with the given parameters $p=3, E_{\min }=$ $-1, E_{\max }=2$. Compute and list all positive numbers of this number system (both normalized and de-normalized), and draw these positive numbers on a number line for \tilde{x}.
2. The bisection method for finding a solution α of $f(x)=0$ starts with a "bracket" interval $[a, b]=\left[a_{0}, b_{0}\right]$ for which $f(a) f(b)<0$. Let $x_{0}=\left(a_{0}+b_{0}\right) / 2$ be the approximate solution at step $0, x_{1}$ (the midpoint of the next bracket $\left[a_{1}, b_{1}\right]$) be the approximate solution at step 1 , and so on. In the following, assume that there is only one exact solution $\alpha \in[a, b]$.
(a) Given $\epsilon>0$, how large should n be to guarantee that the error $\left|\alpha-x_{n}\right| \leq \epsilon$?
(b) Suppose the method is programmed to stop if $f\left(x_{n}\right)$ is ever exactly 0 , i.e. if the approximate solution x_{n} at step n turns out to be exactly equal to α. You run the program, and sure enough, it stops at step n. Give the set of all possible values that α can take (this will be a formula involving a, b and n).
(c) Suppose you are in the situation above, i.e. the program has encountered the exact solution and stopped at step n. What is the value of $\left|x_{n}-x_{n-1}\right|$?
3. For $i=0,1, \ldots n$, let $x_{i}=-1+i h$, where $h=2 / n$. These are just the evenly spaced points on the interval $[-1,1]$. Denote by $\left\{l_{i}(x)\right\}, i=0,1, \ldots n$, the usual Lagrange interpolating polynomials on $\left\{x_{i}\right\}$, in the context of polynomial interpolation.
(a) Show that the nth derivative of $l_{n}(x)$ equals h^{-n}. (Hint: What is the coefficient of x^{n} in the polynomial $l_{n}(x)$?)
(b) Will the nth derivative of all the remaining $l_{i}(x)$ also equal h^{-n} or can these values be different? Justify briefly. (Hint: Do a rough calculation for $i \approx n / 2$.)
(c) Suppose $\left\{P_{i}(x)\right\}$ are the usual Legendre polynomials $\left(P_{0}(x)=1, P_{1}(x)=x\right.$, etc.). If n is even, give two values of $x \in[-1,1]$ for which $P_{n+1}(x)=l_{n}(x)$. (Hint: Use the properties that $P_{n}(\pm 1)=(\pm 1)^{n}$ and also that P_{n} is an odd function for n odd and an even function for n even.)
4. Consider the weight function $w:[-1,1] \rightarrow \mathbb{R}, w(x)=x^{2}$.
(i) Construct an integration rule of the form $I(f)=A f(-1)+B f(0)+C f(1)$ so that

$$
I(f)=\int_{-1}^{1} w(x) f(x) d x
$$

is valid for all quadratic polynomials f.
(ii) Determine the degree of precision of the quadrature at (i).
(iii) Use the interpolation error formula to derive an estimate for the error

$$
\left|\int_{-1}^{1} w(x) f(x)-I(f)\right|,
$$

where f is a sufficiently smooth function (specify how many times does f have to be differentiable so that your estimate holds).

