Math 620 Comprehensive Examination

August 17, 2020
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. Consider the model of a binary computer number system, whose non-zero (and non-special) numbers are modeled by

$$
\tilde{x}=(-1)^{s}\left(b_{0} \cdot b_{1} b_{2} \ldots b_{p-1}\right)_{2} 2^{E}
$$

with sign bit $s \in\{0,1\}$, binary digits $b_{i} \in\{0,1\}, i=0,1, \ldots, p-1$, and exponent $E_{\min } \leq E \leq E_{\max }$, where $p, E_{\min }, E_{\max }$ are the given parameters of the number system.
(a) The normalized numbers \tilde{x} are defined by $E_{\min } \leq E \leq E_{\max }$ and $b_{0} \neq 0$ being the first non-zero digit of the number. Determine the formulas for the smallest and largest normalized numbers.
(b) The de-normalized numbers \tilde{x} are defined by $E=E_{\min }$ and the requirement that not all digits $b_{i}, i=0,1, \ldots, p-1$, are zero. Determine the formulas for the smallest and largest de-normalized numbers.
(c) Consider the very small number system with the given parameters $p=3, E_{\min }=-1, E_{\max }=$ 2. Compute and list all positive numbers of this number system (both normalized and denormalized), and draw these positive numbers on a number line for \tilde{x}.
2. Consider the problem of approximation of a given function $f(x)$ by a polynomial $p(x)$.
(a) State the problem precisely (with some key assumption). How is the goal of this problem different from conventional polynomial interpolation?
(b) State the Weierstrass theorem that guarantees existence of a solution for this problem.
(c) Summarize several methods that exist for the approach to this problem. Discuss the methods; are there differences in cost or other advantages and disadvantages?
3. (a) Consider a quadrature on $[0,1]$ of the form:

$$
\begin{equation*}
Q(f)=w_{0} f(0)+w_{1} f(\xi), \tag{1}
\end{equation*}
$$

meaning, $Q(f)$ is supposed to approximate $\int_{0}^{1} f(x) d x$. Identify the values of w_{0}, w_{1}, and ξ so that the quadrature Q has the highest possible degree of precision. Determine the actual degree of precision of the quadrature you found.
Note: this is not a standard quadrature formula; there will be no partial credit if you assume that it is standard.
(b) Translate the quadrature from the standard interval $[0,1]$ to an arbitrary interval $[a, b]$, and derive (with a sufficiently plausible explanation, if not a complete proof) an approximation estimate for the quadrature Q in (1) of the form

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-Q(f)\right| \leq C(b-a)^{m} \max _{x \in[a, b]}\left|f^{[n]}(x)\right| . \tag{2}
\end{equation*}
$$

Hint: You may consider an interpolation polynomial of appropriate degree to produce the estimate, and you must identify the numbers m and n above.
(c) Build a composite rule on an interval $[a, b]$ based on the quadrature Q in (1). Assume a uniform partition $a=x_{0}<x_{1}<x_{2}<\cdots<x_{k}=b$, with $x_{j+1}-x_{j}=h$. Determine how many function evaluations are needed if k intervals are used, and state (based on your formula (2)) an approximation result of the form

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-Q(f)\right| \leq C h^{r} \max _{x \in[a, b]}\left|f^{s}(x)\right| . \tag{3}
\end{equation*}
$$

4. (a) State the Contraction Mapping Theorem (CMT) and briefly describe the fixed point method.
(b) Consider the equation

$$
\begin{equation*}
x=\lambda x(1-x), \quad \lambda>0, \tag{4}
\end{equation*}
$$

which has solutions $\xi_{0}=0$ and $\xi_{1}=1-1 / \lambda$. Show that for $\lambda \in(0,1)$ the CMT applies on the interval $[0,1]$. To which solution does the fixed point method converge?
(c) Show that for $\lambda \in(1,3)$ the CMT applies on a small interval around ξ_{1}. (You may invoke a theorem related to fixed points).
(d) Find $\lambda \in(1,3)$ so that the fixed point method converges to ξ_{1} quadratically.

