Math 630 Comprehensive Examination

August 22 (Day 2), 2019
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. (a) Let M be any $n \times n$ nonsingular matrix, and let $A=M^{T} M$. Show that A is symmetric, positive definite.
(b) We say $A=R^{T} R$ is the Cholesky decomposition when R has a special form. What is the form of R and what can be said about its diagonal entries? In particular, under what conditions is the Cholesky decomposition unique?
(c) Consider the outer-product form of Cholesky method, written in the form

$$
\left[\begin{array}{cc}
a_{11} & b^{T} \\
b & \hat{A}
\end{array}\right]=\left[\begin{array}{cc}
r_{11} & t^{T} \\
s & \hat{R}^{T}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & s^{T} \\
t & \hat{R}
\end{array}\right] .
$$

First, what is t ? Use this form to formulate a recursive method for the computation of the Cholesky factorization, and then use it to find a factorization of the matrix

$$
A=\left[\begin{array}{ccc}
9 & 3 & 3 \\
3 & 10 & 7 \\
3 & 5 & 9
\end{array}\right]
$$

2. Let $A \in \mathbb{C}^{n \times n}$ and consider the eigenvalue problem $A u=\lambda u$.
(a) Describe an iterative method to aproximate the eigenvector corresponding to the eigenvalue closest to some number $\rho_{0} \in \mathbb{C}$ (which may not be an eigenvalue).
(b) Let q be a vector that is close to an eigenvector. Explain how to compute an approximation of the corresponding eigenvalue ρ. In particular, define the Rayleigh quotient which approximates ρ, and state how it is related to the value of $\|A q-\rho q\|_{2}$.
(c) Let (λ, v) be an eigenpair of A, and assume $\|v\|_{2}=1$. Let $q \in \mathbb{C}^{n}$ with $\|q\|_{2}=1$, and $\rho=q^{*} A q$. Show that

$$
|\lambda-\rho| \leq 2\|A\|_{2}\|v-q\|_{2} .
$$

Hint: You may use $\lambda=v^{*} A v$.
3. (a) Define the Householder reflector R that transforms a unit vector $\left(\|u\|_{2}=1\right)$ in \mathbb{R}^{n} into the first standard basis vector $e_{1}=[1,0, \ldots, 0]^{T} \in \mathbb{R}^{n}$.
(b) Briefly define the singular value decomposition (SVD) of a matrix $A \in \mathbb{R}^{m \times n}$ and the pseudo-inverse of A.
(c) Let $u \in \mathbb{R}^{n}, n \geq 2$ be a unit vector. Let $A=[u 2 u]$, that is, the $n \times 2$ matrix that has as columns the vectors u and $2 u$. Compute the SVD of A and also the pseudo-inverse of A.
Hint: For the left matrix in the SVD of A use the matrix R at (a); you may also exploit the relationship between the SVD of A and the SVD of $R A$, which is easier to compute. The pseudo-inverse of A has a very simple formula in terms of A.
4. (a) Define the condition number $\kappa(A)$ of a nonsingular square matrix A, and explain its relevance to the approximate solution of the linear system $A x=b$. You may refer to the perturbed system $A(x+\delta x)=b+\delta b$.
(b) Show that $\kappa(A) \geq 1$.
(c) If A is a nonsingular triangular $n \times n$ matrix, and the condition number is computed with respect to the ∞-norm, show that

$$
\kappa(A) \geq \frac{\max _{i=1}^{n}\left|a_{i i}\right|}{\min _{i=1}^{n}\left|a_{i i}\right|} .
$$

