Math 620 Comprehensive Examination

August 21 (Day 1), 2019
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. A function $g(x)$ is called a contraction on the interval $[a, b]$ if $g([a, b]) \subset[a, b]$ and moreover, there exists $0 \leq k<1$ such that $\forall x, y \in[a, b]$ we have $|g(x)-g(y)| \leq k|x-y|$.
(a) Find $d>0$ such that the function $g(x)=\cos x$ is a contraction on $[0.5-d, 0.5+d]$. Justify fully. Hint: The cosine of 1 radian is about 0.54 .
(b) Let $g(x), d$ be as above. Show that $g(x)$ cannot be a contraction on every interval $[0.5-c, 0.5+c] \subset[0.5-d, 0.5+d]$. Hint: Suppose it was a contraction on every interval. What would that imply?
(c) Write down an iterative scheme of the form $x_{n+1}=G\left(x_{n}\right)$ that converges quadratically to a fixed point of $g(x)=\cos x$ for initial guess close enough to the fixed point.
2. (a) Suppose $\left\{P_{n}\right\}$ are the Legendre polynomials, with the L_{2} norm of P_{n} given by $\sqrt{\frac{2}{2 n+1}}$. Let $\left\{Q_{n}\right\}$ be orthonormal polynomials on $[-1,1]$ corresponding to the weight $w(x)=x^{4}$. Justifying each step of the calculation fully, compute the value of

$$
I=\int_{-1}^{1}\left(P_{5}(x)+2 x^{2} Q_{1}(x)+x^{2} Q_{2}(x)\right)^{2} d x
$$

Hint: Use orthonormality/orthogonality properties of both $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ - don't try to explicitly find Q_{1}, Q_{2}.
(b) Let p_{1} be the linear interpolant of a function f at the points $x_{0}, x_{1}\left(x_{0}<x_{1}\right)$. Then by the theorem on interpolation error, if $f \in C^{(2)}\left[x_{0}, x_{1}\right]$,

$$
f(x)-p_{1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{f^{(2)}(\xi(x))}{2}, x_{0}<x<x_{1}
$$

for some $\xi(x)$ between x_{0} and x_{1}.
Determine $\xi(x)$ explicitly in the case $f(x)=\frac{1}{x}, x_{0}=1, x_{1}=2$. (It will be a function of x.)
3. (a) Consider the quadrature rule

$$
\int_{a}^{a+h} f(x) d x=A f(a-h)+B f(a)+C f(a+h)
$$

Find A, B, C which maximize the degree of precision.
Hint: First derive the rule for $a=0$ and then use a change of variable.
(b) State this degree of precision and verify it is not any higher.
(c) Suppose g is a function whose 3rd divided differences are all the same. You are given that $g(-2)=1, g(0)=3, g(1)=4, g(2)=5$. Show, without finding an explicit formula for g, that

$$
\int_{-2}^{0} g(x) d x=4 .
$$

Hint: First express it as the difference of two integrals. Then use a well-known quadrature rule for each. This question is unconnected to parts (a) and (b) above, and the rule in part (a) isn't applicable.
4. Consider the ordinary differential equation

$$
\begin{equation*}
y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=Y_{0} . \tag{1}
\end{equation*}
$$

(a) Use numerical integration to derive the trapezoidal method for the above with uniform step size h. (You don't have to give the truncation error.)
(b) Given below is a multistep method for solving (1) (with uniform step size h):

$$
\begin{equation*}
y_{n+1}=3 y_{n}-2 y_{n-1}+h\left(\frac{1}{2} f\left(x_{n}, y_{n}\right)-\frac{3}{2} f\left(x_{n-1}, y_{n-1}\right)\right) \tag{2}
\end{equation*}
$$

What is the truncation error for (2)? Is the method consistent? Is it stable? Is it convergent? If convergent, determine the order of convergence.

