Math 630 Comprehensive Examination

8/22/2018
Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. (a) Determine a compact SVD for the rank-one matrix $A=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]\left[\begin{array}{ll}3 & 4\end{array}\right]$.
(b) Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Define its condition number $\kappa_{2}(A)$ and show how it can be computed using the singular values of A.
(c) Let $A \in \mathbb{C}^{m \times n}$. Prove that

$$
\|A\|_{2}=\max _{x \in \mathbb{C}^{n}, y \in \mathbb{C}^{m},\|x\|_{2}=1,\|y\|_{2}=1}\left|y^{*} A x\right| .
$$

(Hint: Use the connection between $\|A\|_{2}$ and σ_{1}.)
2. Suppose $A \in \mathbb{C}^{m \times n}$ has the full column rank and $b \in \mathbb{C}^{m}$. Explain the difference between the full and and reduced QR factorization of A assuming that both factorizations can be written using

$$
Q=\left[\begin{array}{ll}
\widehat{Q} & \widetilde{Q}
\end{array}\right] \quad R=\left[\begin{array}{l}
\widehat{R} \\
\widetilde{R}
\end{array}\right],
$$

and state the basic properties of these matrices. Next. define

$$
\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]:=Q^{*} b=\left[\begin{array}{l}
\widehat{Q}^{*} b \\
\widetilde{Q}^{*} b
\end{array}\right] .
$$

If $x \in \mathbb{C}^{n}$ is the solution of the least squares problem $\min _{x \in \mathbb{C}^{n}}\|b-A x\|$ and $r=b-A x$, prove
(a) $A x=\widehat{Q} b_{1}$ and $\widehat{R} x=b_{1}$,
(b) $r=\widetilde{Q} b_{2}$ and $\|r\|_{2}=\left\|b_{2}\right\|_{2}$.
3. (a) Define the Gauss-Seidel iteration process for solving a linear system $A x=b$, where $A \in \mathbb{R}^{n \times n}$, and $b \in \mathbb{R}^{n}$. State (without proof) sufficient conditions on the matrix A under which the iteration converges to the solution regardless of b and the initial guess.
(b) Consider the system

$$
\left[\begin{array}{ll}
4 & 1 \\
8 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Decide whether the Gauss-Seidel process starting from the initial guess

$$
x^{(0)}=\left[\begin{array}{l}
1 \\
2
\end{array}\right],
$$

converges to the solution of the system. If convergent, discuss the convergence rate (including the norm used). Compute the iterate $x^{(1)}$.
4. (a) Define the Cholesky factorization of a matrix $A \in \mathbb{R}^{n \times n}$, and state (without proof) a necessary and sufficient condition for a matrix to have a Cholesky factorization. What is the complexity (operation count) up to leading order of performing a Cholesky factorization of a generic (full) matrix?
(b) Show that if a matrix A has a Cholesky factorization and is tridiagonal $\left(A_{i j}=0\right.$ if $|i-j|>1)$, then its Cholesky factor is also tridiagonal.
(c) Show that if a matrix A has a Cholesky factorization with Cholesky factor R, then

$$
\|R\|_{2}^{2}=\|A\|_{2}
$$

