$$
\text { Math } 620 \text { Comprehensive Examination }
$$

8/22/2018

Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

1. This problem is concerned with solving the equation $f(x)=0$ using Newton's method, assuming f is a smooth $\left(C^{\infty}\right)$ function.
(a) Assume that $f(a)=0, f^{\prime}(a) \neq 0$, and $f^{\prime \prime}(a)=0$. Show that Newton's method converges with order at least 3 .
(Hint: regard the Newton iteration as a fixed point iteration.)
(b) Let $f(x)=x-x^{3}$. Write the Newton iteration for finding the roots of f and identify an open interval A around $a=0$ so that for every initial guess $x_{0} \in A$ the sequence x_{n} generated from Newton's method converges to 0 . What is the order of convergence of Newton's method to $a=0$, assuming $x_{0} \in A$? Justify your answers.
2. Consider the following three non-standard interpolation problems:

Given three numbers A, B, C and three (not necessarily distinct) nodes $x_{1}, x_{2}, x_{3} \in \mathbb{R}$, find a quadratic polynomial $q(x)$ so that

$$
\begin{array}{lll}
\text { Problem 1: } & q\left(x_{1}\right)=A, & q\left(x_{2}\right)=B, \\
\text { Problem 2: } & q\left(x_{1}\left(x_{3}\right)=C,\right. & q^{\prime}\left(x_{2}\right)=B, \\
\text { Problem 3: } & q\left(q_{1}\left(x_{3}\right)=A,\right. & q^{\prime \prime}\left(x_{2}\right)=B, \tag{3}\\
q^{\prime}\left(x_{3}\right)=C .
\end{array}
$$

(a) For Problem 1, what conditions if any are needed on the nodes to ensure a solution exists for every possible A, B, and C ? Also, suppose this condition is violated, what conditions on A, B, C would still ensure a solution?
(b) Repeat for Problem 2.
(c) Repeat for Problem 3.
3. (a) f is a polynomial such that for any $x_{0}, x_{1}, x_{2}, x_{3}$, the divided difference $f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is the same constant. Also, $f(-1)=2, f(1)=3$. Justifying fully, find

$$
\int_{-\sqrt{3}}^{\sqrt{3}} f(x) d x
$$

(b) Let D_{h} be a difference formula for the derivative. Identify the coefficients A, B and C in the formula $D_{h} f(x)=A f(x-2 h)+B f(x-h)+C f(x)$ so that for any sufficiently smooth function $f(x)$, we have the error $f^{\prime}(x)-D_{h} f(x)$ is as good as possible in terms of order of convergence. Find this order of convergence (i.e. p in the order h^{p}) and say how smooth the function f has to be to attain it.
4. Consider the ordinary differential equation

$$
\begin{equation*}
y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=Y_{0} . \tag{4}
\end{equation*}
$$

(a) Use Taylor series to derive Euler's method for the above (with uniform step size h) along with the method's truncation error.
(b) Given below is a multistep method for solving (4) (with uniform step size h):

$$
\begin{equation*}
y_{n+1}=2 y_{n-1}-y_{n}+h\left(\frac{5}{2} f\left(x_{n}, y_{n}\right)+\frac{1}{2} f\left(x_{n-1}, y_{n-1}\right)\right) \tag{5}
\end{equation*}
$$

What is the truncation error for (5)? Is the method consistent? Is it stable? Is it convergent? If convergent, determine the order of convergence.

