Math 620 Comprehensive Examination

8/22/2018

Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

- 1. This problem is concerned with solving the equation f(x) = 0 using Newton's method, assuming f is a smooth (C^{∞}) function.
 - (a) Assume that f(a) = 0, f'(a) ≠ 0, and f''(a) = 0. Show that Newton's method converges with order at least 3.
 (Hint: regard the Newton iteration as a fixed point iteration.)
 - (b) Let $f(x) = x x^3$. Write the Newton iteration for finding the roots of f and identify an open interval A around a = 0 so that for every initial guess $x_0 \in A$ the sequence x_n generated from Newton's method converges to 0. What is the order of convergence of Newton's method to a = 0, assuming $x_0 \in A$? Justify your answers.
- 2. Consider the following three <u>non-standard</u> interpolation problems: Given three numbers A, B, C and three (not necessarily distinct) nodes $x_1, x_2, x_3 \in \mathbb{R}$, find a quadratic polynomial q(x) so that

Problem 1:
$$q(x_1) = A$$
, $q(x_2) = B$, $q'(x_3) = C$. (1)

Problem 2:
$$q(x_1) = A$$
, $q'(x_2) = B$, $q'(x_3) = C$. (2)

Problem 3:
$$q(x_1) = A$$
, $q''(x_2) = B$, $q'(x_3) = C$. (3)

- (a) For Problem 1, what conditions if any are needed on the nodes to ensure a solution exists for every possible A, B, and C? Also, suppose this condition is violated, what conditions on A, B, C would still ensure a solution?
- (b) Repeat for Problem 2.
- (c) Repeat for Problem 3.
- 3. (a) f is a polynomial such that for any x_0, x_1, x_2, x_3 , the divided difference $f[x_0, x_1, x_2, x_3]$ is the same constant. Also, f(-1) = 2, f(1) = 3. Justifying fully, find

$$\int_{-\sqrt{3}}^{\sqrt{3}} f(x) \, dx$$

- (b) Let D_h be a difference formula for the derivative. Identify the coefficients A, B and C in the formula $D_h f(x) = Af(x 2h) + Bf(x h) + Cf(x)$ so that for any sufficiently smooth function f(x), we have the error $f'(x) D_h f(x)$ is as good as possible in terms of order of convergence. Find this order of convergence (i.e. p in the order h^p) and say how smooth the function f has to be to attain it.
- 4. Consider the ordinary differential equation

$$y'(x) = f(x, y(x)), \ y(x_0) = Y_0.$$
 (4)

- (a) Use Taylor series to derive Euler's method for the above (with uniform step size h) along with the method's truncation error.
- (b) Given below is a multistep method for solving (4) (with uniform step size h):

$$y_{n+1} = 2y_{n-1} - y_n + h\left(\frac{5}{2}f(x_n, y_n) + \frac{1}{2}f(x_{n-1}, y_{n-1})\right)$$
(5)

What is the truncation error for (5)? Is the method consistent? Is it stable? Is it convergent? If convergent, determine the order of convergence.