MATH 630 Numerical Analysis Comprehensive Exam - Jan 25, 2018

Attempt any 3 of the 4 questions below. Show your work.

1. Suppose an $m \times m$ matrix A is written in the block form

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} is $n \times n$ and A_{22} is $(m-n) \times(m-n)$. Assume that the upper-left $k \times k$ block $A_{1: k, 1: k}$ is nonsingular for each k with $1 \leq k \leq m$.
(a) Verify the formula

$$
\left[\begin{array}{cc}
I & 0 \\
-A_{21} A_{11}^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]
$$

for "elimination" of the block A_{21}. The matrix $A_{22}-A_{21} A_{11}^{-1} A_{12}$ is known as the Schur complement of A_{11} in A.
(b) Suppose A_{21} is eliminated row by row by means of n steps of Gaussian elimination (resulting in partial LU factorization). Show that the bottom-right $(m-n) \times(m-$ n) block of the resulting matrix is again $A_{22}-A_{21} A_{11}^{-1} A_{12}$. (Hint: Denote by L^{-1} the matrix used to eliminate A_{21}, that is let $A=L U$ be the partial factorization, and $A_{11}=L_{11} U_{11}$. Write the structure of L^{-1} using matrices $L_{11}, 0, I$ and a matrix X, and use it to show the claim. It may be useful to recall that LU factorization is computed by applying a sequence of transformations L_{k} to matrix A.)
2. Consider the matrix

$$
A=\left[\begin{array}{cc}
-2 & 11 \\
-10 & 5
\end{array}\right]
$$

(a) Determine a real SVD of A in the form $A=U \Sigma V^{T}$. The SVD is not unique, so find the one that has the minimal number of minus signs in U and V, and specifically list the singular values, left singular vectors, and right singular vectors of A.
(b) What are the 1-, 2-, ∞ - and Frobenius norms of A ?
(c) Find A^{-1} not directly, but via the SVD.
(d) Find the eigenvalues of A.
(e) Verify that $\operatorname{det} A=\lambda_{1} \lambda_{2}$ and $|\operatorname{det} A|=\sigma_{1} \sigma_{2}$.
3. Let

$$
A=\left[\begin{array}{rr}
1 & s \\
-s & 1
\end{array}\right], \quad s \in \mathbb{R} .
$$

(a) Compute the error propagator for the Jacobi iteration, that is, the matrix E_{J} for which $e_{n+1}=E_{J} e_{n}$, where e_{n} is the error at the $n^{\text {th }}$ iterate. Find necessary and sufficient conditions on s so that the Jacobi iteration for the system $A x=b$ converges for any initial value x_{0} and right-hand side $b \in \mathbb{R}^{2}$. (Hint: Set the condition that $E_{J}^{n} \rightarrow 0$ as $n \rightarrow \infty$.)
(b) Compute the error propagator $E_{G S}$ for the Gauss-Seidel iteration, and show that the Gauss-Seidel iteration for the system $A x=b$ converges (for any initial value x_{0} and right-hand side $b \in \mathbb{R}^{2}$) under the same conditions on s as the Jacobi method.
(c) Given a (formal) parameter s for which both iterations converge, $b=[1,1]^{T}$ and $x_{0}=0$, compute the convergence rates for each of the Jacobi and Gauss-Seidel iterations for the system $A x=b$. The convergence rate with respect to a norm $\|\cdot\|$ is defined by $\lim _{n \rightarrow \infty}\left\|r_{n+1}\right\| /\left\|r_{n}\right\|$ (provided the limit exists), where $r_{n}=b-A x_{n}$ is the residual.
4. The condition number of a square $n \times n$ nonsingular matrix A with respect to a matrix norm $\|\cdot\|$ is defined to be

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\| .
$$

(a) Show that if $b, b^{\prime} \in \mathbb{R}^{n}$ are non-zero, and $A x=b, A x^{\prime}=b^{\prime}$, then

$$
\frac{\left\|x-x^{\prime}\right\|}{\|x\|} \leq \kappa(A) \frac{\left\|b-b^{\prime}\right\|}{\|b\|}
$$

where $\|x\|$ denotes a vector norm that is compatible with the given matrix norm.
(b) If $A=Q R$ is the $Q R$ factorization of A, show that $\kappa_{2}(A)=\kappa_{2}(R)$, where $\kappa_{2}(A)$ is the condition number of A computed using the 2 -norm.
(c) Let $\varepsilon>0$ be a small number, and

$$
A=\left[\begin{array}{cc}
1 & 1+\varepsilon \\
1-\varepsilon & 1
\end{array}\right], \quad b=\left[\begin{array}{c}
2+\varepsilon \\
2-\varepsilon
\end{array}\right] .
$$

Using the infinity-norm, compute $\kappa(A)$. Then solve the system $A x=b$ and find b^{\prime} so that

$$
\frac{\left\|x-x^{\prime}\right\|_{\infty}}{\|x\|_{\infty}} \approx \kappa(A) \frac{\left\|b-b^{\prime}\right\|_{\infty}}{\|b\|_{\infty}}
$$

where $A x^{\prime}=b^{\prime}$.

