MASTER'S COMPREHENSIVE EXAM IN Math 600–REAL ANALYSIS January 2023

Do any three (out of the five) problems. Show all work. Each problem is worth ten points. In the following, \mathbb{R}^n carries the usual metric.

- **Q1** Let d be a metric on M. Define ρ on $M \times M$ by $\rho(x, y) := \min\{1, d(x, y)\}$. Assume that ρ is a metric on M. Show the following:
 - (a) A sequence (x_n) is Cauchy in (M, d) if and only if it Cauchy in (M, ρ) .
 - (b) A sequence (x_n) is convergent in (M, d) if and only if it is convergent in (M, ρ) .
 - (c) (M, d) is complete if and only if (M, ρ) is complete.
 - (d) Show that compact/connected sets are the same in both (M, d) and (M, ρ) , i.e., a set is compact (resp. connected) in (M, d) if and only if it is compact (resp. connected) in (M, ρ) . (*Hint*: consider the identity map.)
- **Q**2 (a) Let (x_k) and (y_k) be two sequences in a compact set A in a normed vector space. For each k, let $z_k = \lambda_k x_k + (1 \lambda_k) y_k$ for some $\lambda_k \in [0, 1]$. Show that (z_k) has a convergent subsequence.
 - (b) Let C be a closed, path-connected (=arcwise connected) set in (M, d) and $f : \mathbb{R} \to (M, d)$ be continuous. Suppose $C \cap f([-5, 1])$ is nonempty. Show that (i) $C \cap f([-5, 1])$ is compact; and (ii) $C \cup f([-5, 1])$ is path-connected.
 - (c) Let I = [a, b] be an interval in \mathbb{R} with a < 0 < b, and $f : I \to I$ be continuously differentiable on I, i.e., $f'(\cdot)$ is continuous on I. Show that (i) there exists $x_* \in I$ such that $L := \max_{x \in I} |f'(x)| = |f'(x_*)|$; (ii) $\frac{f(I)}{L+1} \subseteq I$; and (iii) the equation (L+1)x - f(x) = 0 has a unique solution. (*Hint* for (iii): consider the function $\frac{f(x)}{L+1}$.)
- **Q3** Consider a differentiable function $f : \mathbb{R} \to \mathbb{R}$ with f(0) = 0 and $|f'(x)| \leq \Delta < \infty$ for all $x \in \mathbb{R}$. (For example, $f(x) = \sin x$ is such a function.) Let (t_n) be a sequence in \mathbb{R} such that $\sum_{n=1}^{\infty} |t_n| < \infty$.
 - (a) Show that f is Lipschitz on \mathbb{R} .
 - (b) Show that the series $\sum_{n=1}^{\infty} f(t_n x)$ converges uniformly on any interval of the form [a, b] in \mathbb{R} .
 - (c) For any $x \in \mathbb{R}$, let F(x) denote the sum of the series $\sum_{n=1}^{\infty} f(t_n x)$. Show that F is differentiable and express the derivative as a series.
- **Q**4 Consider the space C[0,1] of all real-valued continuous functions on the interval [0,1] equipped with the sup-norm $|| \cdot ||$. In C[0,1], consider

$$K = \left\{ p : p(t) = a_0 + a_1 t + a_2 t^2, \ ||p|| \le 1 \right\}.$$

(So, K is the set of all quadratic polynomials with sup-norm less than or equal to one.)

(a) Show that there is a positive number Δ such that for any $p \in K$, $p(t) = a_0 + a_1 t + a_2 t^2$,

$$|a_0| + |a_1| + |a_2| \le \Delta$$

(*Hint*: Assuming the contrary, suppose $p^{(k)}$ is a sequence in K such that $|a_0^{(k)}| + |a_1^{(k)}| + |a_2^{(k)}| \to \infty$. Look at the sequence $q^{(k)} := \frac{p^{(k)}}{|a_0^{(k)}| + |a_1^{(k)}| + |a_2^{(k)}|}$.)

- (b) Show that K is an equicontinuous family.
- (c) Show that K is compact in C[0, 1].
- **Q**5 Provide the definition of the (Fréchet) derivative of a map $f: V_1 \to V_2$ at a point $x \in V_1$, where $(V_i, \|.\|_i)$ are finite dimensional normed vector spaces.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x, y) = y^2 \sin(1/x) \qquad \text{if } x \neq 0,$$

$$f(x, y) = y^2 \qquad \text{if } x = 0.$$

- (a) Decide if f has partial derivatives at (0,0) and if so compute them.
- (b) Decide if f has a Fréchet derivative at (0,0) and if so what is it?
- (c) What is the largest subset of \mathbb{R}^2 on which f is Fréchet differentiable?