MASTER'S COMPREHENSIVE EXAM IN Math 600-REAL ANALYSIS
 August 2022

Do any three (out of the five) problems. Show all work. Each problem is worth ten points. In the following, \mathbb{R}^{n} carries the usual metric.

Q1 Let (M, d) and (N, σ) be metric spaces and $f:(M, d) \rightarrow(N, \sigma)$ be continuous.
(i) Provide the definition of (open cover) compactness of a set K in (M, d). Show that if K is compact in M, then $f(K)$ is compact in N.
(ii) Provide the definition of a connected set C in (M, d). What are connected sets in \mathbb{R} ? If C is connected in M, what can you say about $f(C)$ in N ?
(iii) Suppose that (X, d) is a metric space such that finite sets are the only compact sets in X. Show that every continuous function from $[0,1]$ (with the usual metric) into X is a constant.

Q2 (i) Let (M, d) be a complete metric space, and $S \subseteq M$ be a closed set. Show that (S, d) is complete.
(ii) Let $A \subseteq M$ be a compact set in (M, d). For each n, let $f_{n}:(M, d) \rightarrow \mathbb{R}$ be a continuous function with $\left(f_{n}\right)$ converging to f_{*} uniformly on A.
(ii.a) Show that for any sequence $\left(x_{n}\right)$ in A converging to $x_{*},\left(f_{n}\left(x_{n}\right)\right)$ converges to $f_{*}\left(x_{*}\right)$.
(ii.b) Explain why for each n, f_{n} restricted to A has a minimizer x_{n}^{*} in A.
(ii.c) Show that the sequence $\left(x_{n}^{*}\right)$ has a subsequence that converges to a minimizer \widehat{x} of f_{*} on A.

Q3 Let $C[0,1]$ denote the set of continuous functions from the interval $[0,1]$ into \mathbb{R}. State the Arzela-Ascoli theorem in the context of a sequence of functions $\left(f_{n}\right)$ in $C[0,1]$. Let $K \subseteq C[0,1]$ be defined by the condition that $f \in K$ if and only if there exist $a, b \in \mathbb{R}$ and $m, n \in \mathbb{N}$ with $|a| \leq 1$ and $|b| \leq 1$ such that

$$
f(x)=a \frac{\cos n x}{n}+b \frac{\sin m x}{m} \quad \forall x \in[0,1],
$$

where \mathbb{N} denotes the set of all natural numbers. Show that

$$
\min \left\{\int_{0}^{1}|t-f(t)| d t: f \in K\right\}
$$

is attained on K.
Q4 (i) Discuss the uniform convergence of $\sum_{n=1}^{\infty} f_{n}$ on $[1, \infty)$ where
$f_{n}:=\frac{x^{n}}{n^{2}\left(1+x^{n}\right)}$.
(ii) Let $f(x)$ denote the sum of the above series for $x \in[1, \infty)$. Show that $f(x)$ is continuous on $[1, \infty)$ and that

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}
$$

for all $x \in(1, \infty)$. [Hint: For the derivative statement, consider $[\delta, \infty)$ for $\delta>1$.]

Q5 (a) State the definition of Fréchet derivative of a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
(b) You are given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\frac{x^{\alpha}+y^{\alpha}}{x^{2}+y^{2}} \quad \text { for }(x, y) \neq(0,0)
$$

and $f(0,0)=0$ where $\alpha>0$.
i. If $\alpha>3$ prove that f is Fréchet differentiable at $(0,0)$. [Hint: $|x|^{\alpha},|y|^{\alpha} \leq\left(x^{2}+y^{2}\right)^{\frac{\alpha}{2}}$.]
ii. If $\alpha=3$ prove that f has directional derivatives along all vectors $(a, b) \in \mathbb{R}^{2}$ at $(0,0)$.
iii. Explain why f is not Fréchet differentiable at $(0,0)$ when $\alpha=3$.

