MASTER'S COMPREHENSIVE EXAM IN Math 603-MATRIX ANALYSIS January 2019

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

- Q1 Let V be a complex finite dimensional inner-product space, and let $P: V \to V$ be the projection on the subspace W_1 along the subspace W_2 , where $V = W_1 \oplus W_2$.
 - (a) Show that P is an orthogonal projection (that is $W_2 = W_1^{\perp}$) if and only if $||Px|| \leq ||x||$ for all $x \in V$. (Hint: for \Leftarrow part, let $w_1 \in W_1$ and $w_2 \in W_2$ be nonzero and $c \in \mathbb{R}$, and let $w = cw_1 + w_2$. Show that

$$2c\operatorname{Re}\langle w_1|w_2\rangle+\|w_2\|^2\geq 0.$$

- If $\langle w_1|w_2\rangle \neq 0$, derive a contradiction by a choice of c.)
- (b) Show that if P is unitary, then it is in fact an identity matrix.
- (c) Suppose that P is normal over C. Prove that P is an orthogonal projection.
- Q2 Let D be a diagonal matrix of size n with diagonal entries $d_1 < d_2 < \cdots < d_n$. Let Z be a symmetric rank 1 matrix with nonzero eigenvalue ρ and no zero entries. Prove that if λ is an eigenvalue of D + Z and v is the corresponding eigenvector, then
 - (a) D and D + Z do not have any common eigenvalues. (Hint: Assume λ is a common eigenvalue, write Z in terms of a vector z and show first that $\langle z|v\rangle=0$.)
 - (b) $\mathbf{Z}v \neq 0$.
- Q3 (a) For matrices A and B of the same shape show that A is row equivalent to B if and only if $R(A^T) = R(B^T)$.
 - (b) For matrices $A_{m \times n}$ and $B_{m \times p}$, prove that $R(A \mid B) = R(A) + R(B)$.
 - (c) If $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ is a square matrix such that $N(A_1) = R(A_2^T)$, prove that A must be nonsingular.
- Q4 Let A be an $n \times n$ unitary complex matrix.
 - (a) Prove that the columns of a unitary matrix are orthonormal.
 - (b) Recall that an $n \times n$ complex matrix A is called lower triangular if its ijth entry $A_{ij} = 0$ for all i < j. Prove that if A is both unitary and lower triangular, then it must be a diagonal matrix. What is the absolute value/modulus of the iith entry A_{ii} of A?
- Q5 Assume that the $n \times n$ real matrix A has characteristic polynomial

$$p(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

- (a) Prove that A is invertible if and only if $a_0 \neq 0$.
- (b) If A is invertible, prove that

$$span\{\ldots, A^{-2}, A^{-1}, I_n, A, A^2, \ldots\} = span\{I_n, A, A^2, \ldots A^{n-1}\}.$$

(c) Suppose that B is an $n \times n$ real matrix and ξ is an eigenvalue of p(B). Prove that there exists an eigenvalue λ of B such that $p(\lambda) = \xi$.