

MASTER'S COMPREHENSIVE EXAM IN Math 603 - MATRIX ANALYSIS August 2018

Do any THREE problems. Show all your work. Each problem is worth 10 points.

- Q1 Let V = C[-1, 1] be the vector space of continuous functions from [-1, 1] to R.
 - (a) Define $\langle \cdot, \cdot \rangle : V \times V \to R$ by

$$\langle f, g \rangle = \int_{-1}^{1} f(\xi)g(\xi) \frac{d\xi}{\sqrt{1-\xi^2}}.$$

Show that this is an inner product on V.

- (b) The Tchebychev polynomials, $\{T_n(x)\}_{n=1}^{\infty}$, are defined by declaring T_n to be the (unique) polynomial such that $\cos(n\theta) = T_n(\cos\theta)$. Show that $\{T_n(x)\}_{n=1}^{\infty}$ is an orthogonal set in the Euclidean space $(V, \langle \cdot, \cdot \rangle)$. What is $||T_n||$?
- Q2 Let A, B be two $n \times n$ matrices. Prove that AB and BA have the same characteristic polynomial.
- Q3 Let V be a 4-dimensional vector space, and let $\{\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3, \ \vec{v}_4\}$ be a basis in V. Let A be the linear operator on V defined by

$$A\vec{v}_1 = \vec{v}_2, \ A\vec{v}_2 = \vec{v}_3, \ A\vec{v}_3 = \vec{v}_4, \ A\vec{v}_4 = \vec{v}_1.$$

- (a) Find the matrix of A with respect to the basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$.
- (b) Find the eigenvalues of A. How many eigenspaces does A have, and what are their dimensions?
- (c) Find a basis of V consisting of eigenvectors of A.

Q4 Let

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & \alpha \end{array} \right].$$

- (a) Show that A is diagonalizable if and only if $\alpha \neq 1$.
- (b) For $\alpha \in (-1,1)$, find the eigenvalue decomposition of A, and compute A^k for $k \in \mathbb{N}$.
- (c) For $\alpha \in (-1,1)$, show that $P = \lim_{k \to \infty} A^k$ exists and that P is a projector. What is the relationship between R(P) and the eigenvectors of A?
- Q5 Suppose that A, B, C are $n \times m$, $m \times p$, $m \times q$ matrices, respectively. If AB = 0 and AC = 0, and rank(A) + rank(B) = n, prove that there exists a $p \times q$ matrix D such that C = BD. In addition, prove that such D is unique if and only if rank(B) = p.