MASTER'S COMPREHENSIVE EXAM IN Math 603-MATRIX ANALYSIS

January 2018

Solve any three problems. Show all work. Each problem is worth ten points.

Notation and definitions:

A square matrix A with complex entries is called normal if $A^*A = AA^*$, where $A^* = \overline{A^T}$ (complex conjugate of transpose). A square matrix A is called nilpotent if there exists $k \in \mathbb{N}$ so that $A^k = 0$. For any $m \times n$ matrix, N(A) denotes the nullspace of A and R(A) the range of A.

- Q1 (a) Let x be a nonzero (column) vector in \mathbb{R}^n . Show that the $n \times n$ matrix $I \frac{xx^T}{\|x\|_2^2}$ is positive semi-definite, and determine its null space, rank, and all of its eigenvalues, and justify your answers.
 - (b) Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Let r = rank(B) and $s = dim(N(A) \cap R(B))$. Find values of r and s so that the columns of AB are linearly independent. Moreover, show that the values you found are the only ones for which columns of AB are linearly independent.
- Q2 (a) Show that if A is normal, then $N(A) \perp R(A)$ and $\mathbb{C}^n = N(A) \oplus R(A)$. (Do not simply state that this is a known result, prove it!)
 - (b) Assume A has the block structure $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$ with B being a $k \times k$ matrix. Show that A is normal if and only if B and C are normal.
 - (c) Show that a triangular matrix is normal if and only if it is diagonal. (For less credit you may assume n = 2, 3).
- Q3 Let A be an $m \times n$ real matrix so that A^TA is invertible and let $P = A(A^TA)^{-1}A^T$.
 - (a) Show that the matrix P is the orthogonal projector onto R(A).
 - (b) Let B be an $m \times p$ real matrix so that B^TB is invertible and $R(B) \cap R(A) = \{0\}$. Show that $B^T(I-P)B$ is invertible. (Hint: First show $B^T(I-P)B = (QB)^T(QB)$, where Q = I P.)
- Q4 Let V be an inner product space over \mathbb{C} , with inner product $\langle u, v \rangle$.
 - (a) Prove that any finite set S of nonzero, pairwise orthogonal vectors is linearly independent.
 - (b) If $T: V \to V$ is a linear operator satisfying $\langle T(u), v \rangle = \langle u, T(v) \rangle$ for all $u, v \in V$, prove that all eigenvalues of T are real.
 - (c) If $T: V \to V$ is a linear operator satisfying $\langle T(u), v \rangle = \langle u, T(v) \rangle$ for all $u, v \in V$, prove that the eigenvectors of T associated with distinct eigenvalues λ and μ are orthogonal.
- Q5 Given the 2-by-2 real matrix $A = \begin{pmatrix} 0 & 1 \\ a & b \end{pmatrix}$, determine the set of all real a, b such that A is
 - (a) orthogonal.
 - (b) symmetric, positive definite.
 - (c) nilpotent.
 - (d) normal.