MASTER'S COMPREHENSIVE EXAM IN Math 603-MATRIX ANALYSIS August 2019

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

- Q1 Let $A \in \mathbb{R}^{n \times n}$ be a skew symmetric matrix, i.e., $A^T = -A$.
 - (a) Show that if n is odd, then det(A) = 0.
 - (b) Show that each eigenvalue of A is either zero or pure imaginary (i.e., of the form ia for a real number $a \neq 0$).
 - (c) Show that $x^T A x = 0$ for any $x \in \mathbb{R}^n$.
 - (d) Let $D \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Use (c) to show D + A is invertible.
- Q2 Let $\mathbb{R}^{2\times 2}$ be the space of 2×2 real matrices.
 - (a) Show that $\mathcal{X} := \{A = [a_{ij}] \in \mathbb{R}^{2 \times 2} \mid a_{11} = a_{22} = 0\}$ is a subspace of $\mathbb{R}^{2 \times 2}$. Find a basis for \mathcal{X} (without proof), and determine the dimension of \mathcal{X} .
 - (b) Consider the standard inner product $\langle A, B \rangle := \operatorname{trace}(A^T B)$ on $\mathbb{R}^{2 \times 2}$. Find a basis for \mathcal{X}^{\perp} , and prove that your finding is indeed a basis for \mathcal{X}^{\perp} .
 - (c) Let $\{A, B, C, D\}$ be a basis for $\mathbb{R}^{2\times 2}$. Show that $\mathbb{R}^{2\times 2}$ is the direct sum of $\mathcal{Y}:=\operatorname{span}\{A+B,B\}$ and $\mathcal{Z}:=\operatorname{span}\{B-C,C+D\}$. Find the projection of A+2B+3C+4D onto \mathcal{Y} .
- Q3 (a) Show that $A \in \mathbb{R}^{n \times n}$ has rank one if and only if there exist two nonzero (column) vectors $x, y \in \mathbb{R}^n$ such that $A = xy^T$.
 - (b) For the rank-one matrix A in (a), determine a necessary and sufficient condition for its trace to be zero in terms of x and y, and explain why.
 - (c) Let $A = xy^T$ and $B = zw^T$ be rank-one matrices for nonzero vectors x, y, z and w in \mathbb{R}^n . What is the largest possible rank of A + B? Show that this largest possible rank is achieved if and only if both $\{x, z\}$ and $\{y, w\}$ are linearly independent sets.
- Q4 Define a unitary matrix, and state when two matrices A and B are unitarily similar. Show:
 - (a) If $A = A^*$ and A is unitarily similar to B, then $B = B^*$.
 - (b) If a Hermitian matrix A is positive definite and B is unitarily similar to A, then B is also positive definite.
 - (c) The eigenvalues of a unitary matrix satisfy $\bar{\lambda} = \lambda^{-1}$.
 - (d) If A is normal and B is unitarily similar to A, then B is also normal.
- Q5 Let V be an n-dimensional inner product space over \mathbb{C} .
 - (a) Let T be a self-adjoint (or Hermitian matrix) operator on V, that is

$$\langle u, Tv \rangle = \langle Tu, v \rangle, \qquad \forall u, v \in V.$$
 (1)

Show that T is a nonnegative self-adjoint operator on V (that is $\langle v, Tv \rangle \geq 0$ for $v \in V$) if and only if the eigenvalues of T are all nonnegative real numbers.

- (b) Let T_1 and T_2 be two self-adjoint operators on V in the sense of (1). Prove or reject: $T_1T_2 + T_2T_1$ is also self-adjoint.
- (c) Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Show that U^{\perp} is invariant under T^* if U is invariant under T.