

MASTER'S COMPREHENSIVE EXAM IN Math 600 -REAL ANALYSIS August 2018

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

- Q1 (a) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous on \mathbb{R}^n , and A be a closed set in \mathbb{R}^n . Show that the set $\{(x, f(x)) \in \mathbb{R}^n \times \mathbb{R}^m \mid x \in A\}$ is closed.
 - (b) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $A \subset \mathbb{R}^n$ such that f(A) is bounded and $\{(x, f(x)) \in \mathbb{R}^n \times \mathbb{R}^m \mid x \in A\}$ is closed. Show that f is continuous on A.
 - (c) Let (x_n) be a sequence in a *complete* metric space (M, d) such that $\sum_{n=1}^{\infty} d(x_{n+1}, x_n) < \infty$. Show that (x_n) converges in (M, d).
- Q2 (a) Use the open cover definition to show that the union of finitely many compact sets is compact.
 - (b) Let $g: \mathbb{R}^n \to \mathbb{R}$ be continuous on \mathbb{R}^n . Show that the nonempty set $\{x \in \mathbb{R}^n \mid ||x|| \le 5, g(x) \ge 1\}$ is compact, where $||\cdot||$ is a norm on \mathbb{R}^n .
 - (c) Let the set $B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + \frac{y^2}{16} = 1\}$, and the functions $p(x,y) = 6x + x^2y$ and $q(x,y) = xy y^3 4$ for $(x,y) \in \mathbb{R}^2$. Show that (i) B is connected; and (ii) there exists $z \in B$ such that p(z) = q(z).
- Q3 Consider the series

$$\sum_{n=1}^{\infty} f_n(x),$$

where $f_n:[0,\infty)\to\mathbb{R}$ is given by $f_n(x)=e^{-n}e^{x/n}$.

- (a) Prove that the series converges uniformly on [0, a] for each a > 0.
- (b) Discuss the continuity and differentiability of the sum of the series on $[0, \infty)$.
- (c) Prove that the series does not converge uniformly on $[0, \infty)$.
- Q4 Let C[0,1] denote the space of all real valued continuous functions on [0,1] endowed with the supremum norm metric.
 - (a) State the definition of 'equicontinuity' for a set in C[0,1]. Is a singleton set in C[0,1] equicontinuous? Justify your answer.
 - (b) State a sufficient condition for a set E in C[0,1] to have the following property: Every sequence in E has a subsequence that converges in C[0,1].
 - (c) Show that in the set

$$E = \{ f \text{ differentiable } : |f(0)| \le 2, |f'(x)| \le 3 \ \forall x \in [0, 1] \},$$

every sequence has a subsequence that converges in C[0,1].

Q5 Provide the definition of the Fréchet derivative of a map $f: \mathbb{R}^n \to \mathbb{R}^m$.

For k>0, a map $f:\mathbb{R}^n\to\mathbb{R}^m$ is said to be homogeneous of degree k if for all $\alpha>0$ and all $x\in\mathbb{R}^n$

$$f(\alpha x) = \alpha^k f(x).$$

- (a) Prove that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is homogeneous of degree k > 1, then f has directional derivatives at the origin along v for all $v \in \mathbb{R}^n$.
- (b) Prove that if f is homogeneous of degree k > 0 and is bounded on the closed unit ball $\overline{B}(0,1)$ centered at the origin, then f is continuous at the origin.
- (c) In addition to the previous boundedness condition, if f is homogeneous of degree k > 1 then prove that f is Fréchet differentiable at the origin and find the derivative.