MASTER'S COMPREHENSIVE EXAM IN Math 600 -REAL ANALYSIS January 2019

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

- Q1 (a) Let (M,d) be a complete metric space and A be a nonempty subset of M. Show that (A,d) is complete if and only if A is closed in (M,d).
 - (b) Let (x_k) be a convergent sequence in the metric space (M,d). Show that there exists a subsequence (x_{k_j}) such that $\sum_{j=1}^{\infty} d(x_{k_j}, x_{k_{j+1}}) < \infty$.
 - (c) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function and (x_k) be a bounded sequence in \mathbb{R}^n such that $f(x_{k+1}) \geq f(x_k)$ for all k. Show that there exists $x_* \in \mathbb{R}^n$ such that $(f(x_k))$ converges to $f(x_*)$.
- Q2 (a) Let (M,d) be a discrete metric space, i.e., for $x,y\in M$, d(x,y)=1 if $x\neq y$ and d(x,y)=0 if x=y; let A be an infinite subset of M. Use the open cover definition to show that A is not compact.
 - (b) Let A be a compact set in a metric space (M,d) and $f:(M,d) \to \mathbb{R}$ be continuous. Let S be the set of maximizer(s) of f on A, i.e., $S = \{x \in A \mid f(x) \ge f(z), \forall z \in A\}$. Show that S is nonempty and compact.
 - (c) Consider a nonempty connected set C in \mathbb{R}^n and let $E := \{x_1 \mid (x_1, \dots, x_n) \in C\}$. Show that there is no continuous function from E onto $\{-1, 0, 1\}$.
- Q3 (a) State the Banach contraction principle.
 - (b) On \mathbb{R} , consider the function $f(x) := 1 + \frac{1}{2}|x| + \frac{1}{8}\sin 3x$. Show that f has a unique fixed point in \mathbb{R} .
 - (c) Let f be as above and h be a Lipschitz function on \mathbb{R} . Show that there is an $\varepsilon > 0$ such that $f + \varepsilon h$ also has a unique fixed point in \mathbb{R} .
- Q4 Let C[0,1] denote the space of all real valued continuous functions on the interval [0,1] with norm $||f|| := \max_{t \in [0,1]} |f(t)|$ and metric D(f,g) := ||f-g||. Let

$$K:=\{f\in C[0,1]:||f||\leq 1\}$$

denote the closed unit ball in C[0,1]. For any natural number n, define the number $\alpha_n := (2n-1)\frac{\pi}{2}$ and functions f_n and g_n in C[0,1] by

$$f_n(x) := x^n \sin(\alpha_n x)$$
, and $g_n(x) := \int_0^x f_n(t) dt$.

- (a) Define 'uniform convergence' of a sequence of continuous functions over [0, 1]. How is it related to 'convergence in the *D*-metric'?
- (b) Does the sequence f_n converge uniformly over [0,1]? Explain.
- (c) Is the set K compact in the metric space (C[0,1],D)? Explain.
- (d) Using Arźela-Ascoli theorem, show that g_n has a subsequence that converges uniformly over [0, 1].

- Q5 (a) Given two finite dimensional normed vector spaces V and W, a map $f: V \to W$, and $c \in V$, provide the definition of the Fréchet derivative Df(c) of f at c.
 - (b) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be defined by

$$f(x) = (a^T x - 1)x$$

where $a \in \mathbb{R}^n$ is non-zero, x, a are interpreted as column vectors and a^T denotes the transpose of a.

Show directly from the definition that the Fréchet derivative of f at $c \in \mathbb{R}^n$ is given by

$$Df(c)(v) = (a^T v)c + (a^T c - 1)v, \quad v \in \mathbb{R}^n.$$

Show that the derivative Df(c) is non-zero at all $c \in \mathbb{R}^n$ if $n \geq 2$ and that the derivative is zero for a certain value of c when n = 1.