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Abstract
A model is presented that predicts the instantaneous spike rate of an olfactory receptor neuron (ORN) in response to the
quality and concentration of an odor stimulus. The model accounts for the chemical kinetics of ligand–receptor binding and
activation processes, and implicitly the initiation of second messenger cascades that lead to depolarization and/or hyper-
polarization of the ORN membrane. Both of these polarizing processes are included in the most general form of the model, as
well as a process that restores the voltage to its negative resting state. The spike rate is assumed to be linearly proportional to
the level of voltage depolarization above a critical negative voltage level. The model includes the simplifying assumption that
activation of bound ligand–receptor complexes by G-proteins and other enabling molecules follows a Monod function that has
the ratio of enabling molecules to bound unactivated ligand–receptor complexes as its argument. Parameters are selected that
provide an excellent fit of the model to previously published empirical data on the response of cockroach ORNs to pulsed
1-hexanol stimuli. The sensitivity of model output to various model parameters is investigated and changes to parameters are
discussed that would improve the ability of ORNs to follow rapidly pulsed stimuli.

Introduction
Olfactory receptor neurons (ORNs) transmit information to
the brain of organisms on the presence and concentration
of volatile chemicals in the environment. The ORNs are the
gatekeepers of olfactory perception, both in the context of
which chemicals are detectable and what resolution is
possible with respect to temporal variability of odors in
turbulent plumes or the concentration gradients of odor
fields. The neural firing or spike rate response of an ORN to
a temporally and spatially varying odor stimulus results
from a concatenation of biochemical, molecular confor-
mational and flux transport processes (Hildebrand and
Shepherd, 1997), each of  which has various transient and
steady states associated with its dynamics. Thus changes
in the membrane voltage potential of an ORN in response
to stimulation by an odor is a highly complex dynamical
process and requires a dynamical systems model to under-
stand fully its temporal properties. Such models usually
involve differential equation descriptions of chemical or
enzyme kinetic processes and current flows or voltage rates
of change. Dynamical systems models can be used to obtain
insights into ORN response characteristics, to generate
hypotheses regarding the nature of the underlying process,
or to synthesize input into neural network models of the
vertebrate olfactory bulb or the crustacean antennal lobe.

This synthesis function is the primary motivation for the
study reported here.

Olfactory perception in an organism begins with odorant
molecules or odor ligands (Hildebrand and Shepherd, 1997)
penetrating the mucous layer of the olfactory epithelium in
vertebrates or entering through the pores of olfactory sen-
silla in insects, diffusing or being transported across a liquid
medium with the help of odorant binding proteins or OBPs;
some of these OBPs may also be implicated in deactiving
odorant molecules (Breer, 1994; Kaissling, 1998b), and then
binding with receptor molecules on the dendritic membranes
of ORNs. The individual receptor molecules, of which there
are known to be hundreds or even thousands of types (Buck
and Axel, 1991; Lancet et al., 1993; Reed, 1994) belong to
the seven transmembrane domain, G-protein coupled family
of receptor proteins. Some of these receptor molecules are
known to be highly specific for particular odorants, typically
those implicated in transducing sex pheromone signals in
insects (Kaissling, 1987). Other receptor molecules, however,
may well be generalists, able to bind to several different
members of a group of ligands of the same or similar
moieties (Singer and Shepherd, 1994). In this case, we expect
ligand–receptor affinities or binding constants to vary
among similar ligands (Lancet et al., 1993).

Once a ligand binds to a receptor protein, the resulting
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ligand–receptor complex couples with and activates
G-proteins (Firestein and Zufall, 1994). This coupling in
turn initiates a second messenger cascade that ultimately
causes ion channels to open and the membrane to depolarize
or, in some cases, hyperpolarize, depending on which chan-
nels have been opened (Ache, 1994; Trotier, 1994). Changes
in membrane polarization cause the ORNs to increase or
decrease their rate of firing with respect to a cell specific
background rate, depending on the concentration of the
odor stimulus (Fujimura et al., 1991; Akers and Getz, 1992,
1993; Getz and Akers, 1993, 1997a).

For all animals, stimulation or inhibition of the ORNs is
the first, or sensory transduction, phase of a multiphase
perceptual process that has striking commonalities in all
animals, with, of course, some notable differences among
taxons with vastly different brain morphologies. The arche-
typal organisms for the model presented here are insects
with highly developed olfactory systems, such as cockroaches
and honeybees. In insects, olfactory stimuli are typically
filamentous plumes of odorant molecules that have a com-
plex spatial and temporal structure (Moore and Atema,
1991; Murlis et al., 1992; Dittmer et al., 1995; Vickers and
Baker, 1994). As the odorant molecules waft around the
antennae of an individual organism, the concentration of
ligands available to the ORNs situated in olfactory sensilla
of various types will be highly stochastic and variable over
time and at different locations on the same antenna at the
same point in time. The various processes altering the firing
rates of  the ORNs, as we show here, smooth out some of
the temporal jitter in the concentration, while variations in
the concentration experienced among ORNs are smoothed
out by a large ensemble of ORNs converging at the next
level onto orders of magnitude fewer olfactory glomeruli
(Shepherd, 1972; Rospars, 1988; Boeckh et al., 1990; Masson
and Mustaparta, 1990; Smith and Getz, 1994; Hildebrand
and Shepherd, 1997).

Mathematical models of ORNs (or, for that matter, taste
receptor neurons) can focus either on the kinetics of
ligand–receptor binding (Ennis, 1989, 1991; Malaka et al.,
1995; Kaissling, 1998a, 1998b; Lánsky and Rospars, 1999)
or on the alteration of receptor membrane potential and
concomitant generation of action potentials (Lánsky and
Rospars, 1993; Tuckwell et al., 1996; Vermeulen et al., 1996;
Vermeulen  and Rospars,  1998).  In  the former  case, the
assumption can be made that spike rate is an appropriate
function of the number of bound ligand–receptors pairs
(Getz and Akers, 1995) or models combining both aspects
can be considered (Lánsky et al., 1994; Rospars et al., 1996).
Here, following the ideas of  Lánsky and Rospars (Lánsky
and Rospars, 1999), I develop a model that combines both
ligand–receptor kinetics and membrane potential dynamics.
A central difficulty in this approach is to find a reasonable
way to model the second messenger cascade linking the
ligand–receptor dynamics to changes in membrane poten-
tial, especially when some components of this cascade are

not yet well understood. I circumvent this difficulty by
taking an approach inspired by consumer-resource concepts
found in population ecology (Getz, 1993).

In this study, parameters in the model are selected to
simulate observed data from cockroach ORNs (Lemon and
Getz, 1997). Because the primary motivation for developing
the model is to use it to generate realistic spike rate input for
a neural network model of olfactory coding in the insect
antennal lobes (Getz and Lutz, 1999), I focus on fitting the
model to existing empirical data rather than capturing
the details of all the processes involved with generating
the response. In some cases these details are not known,
particularly with regard to second messenger cascades. In
other cases, the details are not necessary to capture the
essential dynamic response of ORNs, and the simplest
reasonable description is used; for example, I use one
equation to model changes in the membrane voltage
potential rather than the usual four to capture the actual
spike profiles (Mascagni and Sherman, 1998). Also, if
ligand–OBP dynamics occur on a much faster time scale
than spike generation, then replacement of a dynamical
description of ligand–OBP interaction with an appropriate
static (equilibrium) value that, perhaps, includes a small
time delay may be a reasonable simplification to make. Thus,
although the model does provide complete insight into the
processes that determine the response profiles of ORNs, the
critical test of the model is how well it can generate realistic
response profiles to be used as input into a network model
of olfactory coding in the insect antennal lobes. As pre-
sented below, the model developed here does provide a good
fit to the response of cockroach ORNs (Lemon and Getz,
1997).

Materials and methods

Modeling ligand–receptor binding kinetics

Chemical kinetic models of the rate at which populations of
receptor molecules at density R on the membranes of ORNs
bind to ligand messenger molecules typically begin with the
assumption that monovalent ligands at density L in the
perireceptor space (i.e. the space around the receptor neuron
membrane where they are sufficiently proximate to interact
with membrane receptor molecules) are competing for
unbound receptors at density U. This implies that the
density B of bound receptors is B = R–U, and that the
reaction is of the form

where k1 and k–1 are respectively the association and
disassociation rates of this reaction (Figure 1). Bound
receptors, however, do not initiate second messenger
cascades until they have activated a coupled G-protein
(Firestein and Shepherd, 1991). The rate at which bound
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receptors at density B become activated receptors at density
A is typically modeled by the simple kinetic process

(Lánsky and Rospars, 1999). One can assume also that the
ligands themselves enter the perireceptor space at a rate
determined by an externally determined flux density k0Lin

(Lin is a density and k0 is a rate) and leave at the same
per-capita (i.e. per molecule) rate they enter. Further, one
can assume, as in Lánsky and Rospars (Lánsky and
Rospars, 1999), that the ligands become inactivated during
the dissociation process

where Ld is the density of degraded ligands that are no
longer able to play a role in generating a response. Recent
evidence, however, suggests that termination of olfactory
signaling has more to do with direct deactivation of ligand–
receptor–G-protein complexes, than ligand degradation per
se (Breer, 1994). For want of specifics regarding the mech-
anisms of receptor inactivation, I assume that the activated
ligand–receptor–G-protein complexes are inactivated at a
per-unit rate k–2, leaving behind, after a sequence of
reactions much faster than k–2, an intact unbound receptor
and a degraded ligand (Figure 1). Thus the inactivation
processes can be approximated by the dissociation process
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Figure 1 A diagram of an ORN and the primary dynamic processes used to model the density A of activated ligand–receptor complexes (densely hatched
ligand and receptor molecules bound with checkered enabling molecules), which are then linked directly in the model to changes in membrane potential (cf.
equation 6). Equations (1)–(5) describing this process involve the ligand flux input Lin into perireceptor space, unbound ligand density variable L, unbound
receptor density variable U, bound ligand–receptor complex density variable B, enabling molecule density variable M (an aggregation of G-proteins, ATP
molecules, etc.—see text) and its background level M0. The parameters k0 and ki, i = ±1, ±2, ±3, are associated rate constants (see text for more details).
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leading to equations (1)–(3) in the Appendix.
To model the activation process in a more realistic

manner, one may need to take account of the fact that the
activation processes require the presence of resources in the
form of ATP, G-proteins, Ca2+ (Restrepo et al., 1996) and
other molecules on which the activation rate k2 depends
(Figure 1). One might expect the activation rate k2 to decline
with decreases in the density M of these second-messenger-
related molecules, which here I generically refer to as
‘enabling molecules’. Thus, at high densities of L, if the
complex B is produced rapidly, then the activation process
may become partially exhausted through a reduction in
the density M, although M will probably not decline to
zero. The reason for this is because these enabling molecules,
at density M,  are  maintained by  cellular  processes  that
replenish or recycle the molecules involved in the activation
processes and restore the density of these molecules to a
resting level M0 during a refractory period after the ligand
input density Lin becomes zero [in reality, ligand input
density is a function of time Lin(t)].

In the absence of specific details, one might expect the
activation rate k2 to be an increasing function of the ratio of
the density M of activation enabling molecules to the
density B of bound receptors, i.e. k2 = k2(M/B). One would
expect this function to saturate at some maximal rate
k2* when (i.e. when enabling molecules are not limiting). A
simple function with this saturating property is the Monod
function, where the onset of saturation is controlled by its
associated Michaelis–Menten ‘half-saturation’ parameter
M1/2—see equation (4) in Appendix A; for a review of this
function  see Smith  and  Waltman  (Smith  and  Waltman,
1995). If the density M of these enabling molecules is drawn
down at a rate proportional to the activation process rate
k2B, while simultaneously being restored by cellular pro-
cesses to a resting density M0, then the kinetics of M is
modeled by equation (5) in the Appendix.

Modeling neuron spike rates

The relationship between the density of activated ligand–
receptor complexes and the spike rate of an olfactory
neuron is complicated by the second messenger cascade that
ultimately results in the opening of the ion channels that
lead to the production of spikes. Without the details of
all, or even the major, biochemical pathways involved in this
second messenger cascade, I need to make some simplifying
assumptions regarding the relationship in questions. First,
I assume that the adaptive processes going on in the cell
are captured by the notion of  enabling molecules and the
saturating kinetic relationship expressed in equation (4).
Second, I explicitly model  the voltage  dynamics of the
receptor neuron membrane and then make the standard
assumption that spike rate is some appropriate function of
membrane voltage (Rospars et al., 1996).

Consider a membrane voltage depolarization and resting
state restoration model based on the simple assumption that
competing restorative and depolarizing forces are propor-
tional to differences in membrane voltage respectively with
regards to resting (Vrest) and maximum depolarizing (Vdep)
levels (note Vrest < Vdep). Also, assume  that  the  rate  of
membrane depolarization is proportional to the density
of activated ligand–receptor complexes A(t). Under these
assumptions, changes in membrane voltage V(t) are modeled
by the equation (6) in the Appendix. Further, if  it is now
assumed that the maximum spike rate for a neuron is Smax,
and that a neuron will not spike if V(t) < Vcrit, then the
simplest model for the instantaneous spike rate incor-
porating this threshold is a clipped linear time-delay model
scaled by the maximum spiking rate with changes in voltage
normalized by the maximum possible change maximum
equal to (Vdep – Vcrit)—see equation (7) in the Appendix.

It is not directly possible to measure an instantaneous
spike rate, only an average spike rate S(t1,t2) over an
arbitrary time interval [t1,t2] or, of course, interspike
intervals [equation (8) in Appendix]. Here, to be compatible
with data used to fit the model, we compute the average
spike rates over consecutive 50 ms time bins.

Results

Baseline dynamics

I first set out to explore the dynamics of the ligand–receptor
binding and activation process, modeled by equations
(1)–(5) in the Appendix. These equations constitute a
fourth-order nonlinear system of ordinary differential equa-
tions in the ‘ligand’, ‘ligand–receptor’, ‘activated ligand–
receptor’ and ‘enabling molecules’ density variables L, B, A
and M, respectively. These equations contain seven rate
parameters (k0, k1, k–1, k2*, k–2, k3 and k–3), an input
parameter or, more generally, function of time Lin(t), three
density scaling parameters, R, M1/2 and M0, and, of course,
four initial conditions, L(0), B(0), A(0) and M(0). Without
loss of generality, I scaled the units of all parameters with
respect to the total number of receptor molecules R = U(t) +
A(t) + B(t) per unit receptor neuron membrane. Note that
we have assumed R to be constant over time, even though
the relative densities of receptors in the different states A(t)
and B(t) change with time. To implement this scaling, we set
R = 1 and interpret the other densities in terms of R; for
example, Lin = 0.1 means that the ligand density in the
perireceptor space is 1/10th the density of the total receptor
molecule density R. Without loss of generality, we can also
scale time. For notational simplicity, the variable we choose
as our basic unit of time is k2* = 1, the maximum rate at
which ligand–receptor complexes are activated [which only
occurs when densities of M(t) are much greater than
M1/2B—see expression (4)].

The model is capable of producing a complex array of
output patterns for different values of the rate and scaling

A U Lk− → +2
d
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parameters, as well as initial conditions. One way of investi-
gating the effects of these parameters and initial conditions
is by systematically studying several simpler special cases
and the sensitivity of solution output to these special cases.
The particular cases selected here are motivated by the need
both to understand the range of possible patterns (analysis
of contrasting cases) and to search for output patterns that
resemble empirical data. In particular, it would be useful to
obtain an understanding of how certain processes influence
the temporal profiles of  the response of  receptors to con-
stant, as well as pulsatile, stimuli.

To begin, I conducted a baseline analysis for the simpli-
fied case k0 → ∞, k–1 = 0, k1 = 1, k–2 = 1, k3 = 1, k–3 = 1
and Lin(t) = 1 for all t ≥ 0 (recall k2* = 1 and R = 1), by
first numerically simulating the behavior of the solution to
equations (1)–(5) when the density scaling parameters have
the values M1/2 = 1 and M0 = 1 (Figure 2A–D), or M0 = 10
(Figure 2E–H). The initial conditions used are the resting
values of the system (i.e. the equilibrium state of the system
in the absence of any external stimuli); i.e. B(0) = 0, A(0) =
0, and M(0) = M0. I then considered the effects of altering
the rate parameters k1, k–2, k3 and k–3 with respect to the
basal simulations of the equations over the interval t ∈
[0,20]. Note that letting k0 → ∞ in equation (1) is equivalent
to assuming that at all times, the actual density L(t) is
equal to the input density Lin(t). Relaxing this assumption
basically sets up a time lag, inversely related to the size of the
rate constant k0, in which the ligand density follows the
input Lin(t) at a distance that depends on how rapidly
ligands bind to available receptors. The dynamics would be a
little more complicated than just a pure time lag, however,
and the ORNs would then take on features associated
with flux detectors, rather than concentration detectors, as
discussed by Kaissling (Kaissling, 1998a).

The results indicate (Figure 2A,E) that the rate k1 at which
ligand and receptor molecules associate serves to scale the
equilibrium proportion of activated ligand–receptor com-
plexes up to a saturating proportion (the value for very large
k1) of ~0.35 when M0 = 1 (Figure 2A) and 0.5 when M0 = 10
(Figure 2E), given that the other rate parameters are unity.
On the other hand, the parameter k1 influences the shape of
the transient rather than the equilibrium value when the
enabling molecule density recovery rate is a relatively slow k3

= 1/30 (Figure 3A). The rate k–2 at which activated ligand–
receptor complexes dissociate into available unbound
receptors and the density Ld of disabled ligands has an
inverse effect on the ligand–receptor complex equilibrium
proportion, both when k3 = 1 (Figure 2B,F) and k3 = 1/30
(Figure 3B). The enabling molecule recovery rate k3

produces a strong peak-shaped ligand–receptor activation
profile when the other parameters have the basal values of
unity, but then only when it has a sufficiently small (i.e. slow)
value itself (Figure 3C). This peak disappears when the
enabling molecule resting density is increased by an order of
magnitude to M0 = 10 (Figure 3G) and the transient become

insensitive to the enabling molecule recovery rate k3. The
rate k–3 at which at which the enabling molecules are used up
when activating ligand–receptor complexes also has an in-
creasing effect on the ligand–receptor complex equilibrium
proportion, both when k3 = 1 (Figure 2D) and k3 = 1/30
(Figure 3C). At the higher resting density of ten enabling
units per receptor (M0 = 10), the equilibrium proportion
of activated ligand–receptor complexes hardly increases
for corresponding values of the various rate parameters,
although a strong peak arises when the rate k–3 increases to
30 (Figure 2H) or even when k–3 is only equal to 1 for the
case k3 = 1/30 (Figure 3C).

Fitting real receptor neuron spike profiles

Empirical data from both the honey  bee Apis mellifera
(Akers and Getz, 1992, 1993; Getz and Akers, 1993) and the
American cockroach Periplaneta americana (Lemon and

Figure 2 Numerical solutions to equations (1)–(5) for the variable A(t)
(density of activated ligand–receptor complexes) are plotted over 20 units of
time (1 unit = 200 ms) for the baseline parameter values k0 → ∞ [i.e.
equation (1) falls away and L(t) Lin(t)), k–1 = 0, k2* = 1, R = 1, Lin(t) = 1,
M1/2 = 1, M0=1 (A–D) or M0=10 (E–H) and, unless otherwise indicated in
A–D and E–F, k1 = 1, k–2 = 1, k3 = 1, k–3 = 1. The initial conditions for all
eight solutions are A(0) = 0, B(0) = 0 and M(0) = M0.
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Getz, 1997) indicate that the average firing rate of a popu-
lation of olfactory receptor neurons has a peak-shaped
profile similar to that displayed in Fig 3A for the cases k1 =
1 and k1 = 30.

These data were obtained from recording the responses of
a population of cockroach ORNs to a  pulsed 1.25 Hz
square-wave 1-hexanol stimulus (Lemon and Getz, 1997).
The means and standard errors of these data (N = 20 recep-
tors in the data set) are illustrated in Figure 4.

Equations (1)–(7) can be used to simulate the data in
Figure 4. These seven equations contain one input function
Lin(t) and 17 adjustable parameters (R, k0, k1, k–1, k2*, k–2,
k3, k–3, M1/2, M0, a0, a1, Vrest, Vdep, Vcrit, Smax and t). Two of
these parameters can be set to unity to scale the equations
to relative units of time and density. Thus I set k2* = 1 and
R = 1. Also, as previously mentioned, I let k0 → ∞ which
allows the ligand density to be replaced with an input
function Lin(t) (note that I made this assumption more
realistic by imposing a 20 ms time delay on this function).
The remaining 14 parameters represent a large number of
degrees of freedom for fitting the output of a model to the
given data. I thus reduced the number of free parameters by
further setting Vrest = –50 mV, which is within 10 mV of the

resting potential of many cockroach neurons (Burrows,
1996). I set Vdep = +50 mV, which is close to the Nernst
potential (i.e. the potential at which a particular ion stops
flowing across the membrane) generated by the fast Na+

depolarizing current in the giant squid axon (Koester, 1991).
I set the maximum spike rate to Smax = 200 spikes/s based
on the fact that the width of a spike in an insect olfactory
neuron is ~3–4 ms (Akers and Getz, 1992). I scaled time so
that 1 unit of time represents 200 ms. This implies that the
input function Lin(t) switches on and off every two units of
time.

An informal search over the remaining parameter space
produced the following set of parameters that provided an
excellent fit to the empirical data (Figure 4): k1 = 5, k–1 =
100, k–2 = 2, k3 = 100, k–3 = 3.5, M1/2 = 0.1, M0 = 10, a0 = 10,
a1 = 80, Vcrit = –45 and t = 0.1 (i.e. 20 ms).

From visual inspection, these parameters provide a good
fit. Of course, a better fit could be obtained using least-
squared or maximum-likelihood methods (Hilborn and
Mangel, 1997). This level of precision, however, would only
be justified if more scenarios were used to make the fitting
procedure more robust (for example, several different con-
centrations, input waveforms, etc.), an exercise beyond the
scope of this paper and the available data.

Finally, additional simulations   were undertaken   to

Figure 3 Numerical solutions to equations (1)–(5) for the variable A(t)
(density of activated ligand–receptor complexes) are plotted over 20 units of
time (1 unit = 200 ms) to investigate the case when the enabling molecule
density M(t) recovery rate is the relatively slow value k3=1/30. The
remaining parameters have the baseline parameter values k0 → ∞, k–1 = 0,
k2* = 1, R = 1, Lin(t) = 1, M1/2 = 1, M0 = 1 and, unless otherwise
indicated, k1 = 1, k–2 = 1, k–3 = 1. The initial conditions for all three
solutions are A(0) = 0, B(0) = 0 and M(0) = M0.

Figure 4 The average spike rate S(t1,t2) (see equation 8) was calculated
over consecutive 50 ms intervals of time (because 1 unit of time is 200 ms,
we have [t1,t2] = [0,0.25], [0.25,0.5], … ,[14.75,15]) from a numerical
solution of equations (1)–(6) and (10) for the input flux Lin equal to a pulsed
1.25 Hz square-wave (solid bars below abscissa) of height 5 units (i.e. five
times the density of the molecular receptors in all possible states), using the
parameter values k1 = 5, k–1 = 100, k–2 = 2, k3 = 100, k–3 = 3.5, M1/2 =
0.1, M0 = 10, a0 = 10, a1 = 80, Vcrit = –45 mV, Vrest = –50 mV, Vdep =
+50 mV, t = 0.1, and Smax = 200, as well as the initial conditions A(0) = 0,
B(0) = 0, M(0) = M0 and V(0) = –50 mV. The results are plotted as an
overlay (grey line from the 0.5 s mark to the 3 s mark) to an empirical data
set (represented by the solid line with associated error bars) obtained from
recording the responses of a population of cockroach ORNs to a 1-hexanol
stimulus pulsed at the same 1.25 Hz frequency (Lemon and Getz, 1997).
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explore the sensitivity of different features in the spike rate
profile (for example, existence of a prominent peak, shape
of peak, on- and off-set characteristics; Figure 5) and the
ability of the spike train to follow a pulsed stimulus (Figure
6). The implications of these results are discussed below.

Discussion

Relationship among parameters

The primary purpose of this paper is to present the model
and investigate how well the processes incorporated in the
model are able to reproduce empirically measured output,
because the model will then be used to generate input into a
neural network model of the insect antennal lobes (Getz
and Lutz, 1999). If the model fits a limited data set well,
then one can move to collecting a more demanding set of
data (more concentrations, a greater variety of stimulus
patterns, etc.) on which to test the model and refine or
extend it. Further, in testing a model, one’s confidence in

how well the model captures the essential processes increases
with the number of parameters that are independently
estimated; for example, direct measurement of Vrest, Vdep

and Vcrit, and of as many of the rate constants and
component densities as possible (Kaissling, 1998b). Thus,
the ultimate test of the model is to  see how well it re-
produces the output for a variety of stimuli when all of
the model parameters are estimated independently of the
output.

Given the paucity of suitable data, I was unable to
estimate (i.e. fix) values for the majority of the parameters
before selecting the values for the remaining set. Further, the
model certainly omits the details of many processes contri-
buting to the production of ORN spike trains in response
to a given stimulus. Even so, the model still has consider-
able value in generating hypotheses regarding relationships
among the rate constants of the identified processes, and
then testing these to see how well they stand up to scrutiny in
real systems.

For example, in trying to find a set of parameters that
provide an approximate fit to the data, it is clear from

Figure 5 Simulated spike rates are generated from for model for the
parameter values listed in Figure 4, except for changes to the values
specifically indicated in each of the three trajectories plotted in panels A–H.

Figure 6 The spike rates of two neurons—one bearing the standard
parameters listed in Figure 4 and the second bearing the same parameters
except for the changes k–3 = 10, a0 = 50, a1 = 1000 and Vcrit = –10
(alternative parameters)—are plotted for the cases where the ligand input
Lin(t) are pulses of square waves of amplitude 2 (plotted below the trajec-
tories) at the labeled frequencies. As discussed more fully in the text, the
alternative set of parameters produces a neuron that is able to follow high
frequency inputs much faster than a standard neuron.
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Figures 2 and 3, especially Figure 3A, that one needs to
select a set of parameters for which k1 << 1 and k3 >> 1.
From a visual inspection of the fit between model output
and empirical data (Figure 4), it is apparent that the model
captures well the reduction in the second and third peaks
of the data compared with the first peak. The model also
captures the fast rise in the first peak, but clearly shows that
the data indicate a slower rising second peak and an even
slower rising third peak that could be due to relatively slow
adaptive processes not accounted for in the model. Several
important points emerge from a comparative study of how
the spike rate changes with the relative values of the para-
meters used to fit the model (Figure 5).

First, a relatively large (fast) ligand–receptor binding rate,
k1, is needed to keep the the observed peak (Figure 4) sharp.
For example, if we drop the value of k1 by a factor of five
to k1 = 1, no adaptation (i.e. presence of a peak) is evident:
the response is cut off at its maximum value by the off-set
of the stimulus (Figure 5A). On the other hand, once k1 is
sufficiently large, increasing its value by a factor of five to k1

= 25 has a relatively small effect on the shape of the peak
(Figure 5A).

Second, the ligand–receptor dissociation rate, k–1, can be
relatively large (fast) compared with the ligand–receptor
binding rate k1, and the transient peak still retained, but not
too large to prevent significant ligand–receptor activation
and initiation of a dense second messenger cascade (Figure
5B). On the other hand, k–1 should not be too small (slow),
since this leads to a slower decay of spike activity once the
stimulus has been removed (Figure 5B).

Third, generation of a strong peak requires the rate k3
at which enabling molecules catalyze the activity of bound
receptor/ligand complexes to be considerably faster than the
enabling molecule cellular restoration rate k–3 (cf. Figure 2C
with k3 = 1/30 and Figure 2H with k–3 = 30). This difference
causes enabling molecules to become limiting and adapta-
tion to set in, provided the absolute values of the rates k3

and k–3 are appropriately scaled with respect to the resting
enabling molecule density M0 and the ligand input density
Lin (compare Figure 2C with 2G and Figure 2D with 2H).
Further, when the input ligand density is pulsed, if k3 is
decreased to the point where it is almost two orders of
magnitude smaller (slower) than k–3, then the height of the
first peak is hardly affected, but the second and third peaks
are now a fraction of the height of the first peak (Figure
5C). By contrast, the second and third peaks become much
closer to the height of the first peak if either k3 is increased
or k–3 is decreased (Figure 5C,D).

Fourth, the peaked behavior is not evident unless the
ligand input and/or the enabling molecule resting con-
centrations, Lin and M0 respectively, are sufficiently high
(Figure 5E,F). These results, together with the above results,
imply that the existence of a transient peak is dependent on
the relative relationship of the densities of the variables
(ligands, free receptors, enabling molecules) to the values

of the rate parameters. Therefore, the absolute values of
the rate parameters can only be set by measuring the true
densities of the variables involved or vice versa. Note that
the half saturation parameter M1/2 has little effect on the
shape of the curve for the set of parameters considered here,
so the results have not been included in Figure 5.

Fifth, the parameter Vcrit, as expected, affects the absolute
height of the peak but, more importantly, it is critical in
determining the offset characteristics of the spike train. If
the critical voltage at which the cell begins its spike activity,
Vcrit, equals the resting voltage Vrest (= –50 mV), then the
spike activity follows the process of the restoration of the
voltage to its resting state so that the relatively sharp switch
of the neuron to its off position is lost (Figure 5G). On the
other hand, since our model is deterministic, no background
spike rate is possible when the neuron is switched off. The
low background spiking level evident in the empirical data
can easily be incorporated into the model by including an
appropriate low noise level in the spike generation process.

Finally, the voltage parameters a0 and a1 need to be
relatively large for the spike train to reproduce (or follow)
steep inclines and declines, as well as sharp peaks, that occur
in the density of the activated ligand–receptor complexes
(cf. Figures 2 and 3). These peaks, however, will not be
effectively followed unless the voltage depolarizing para-
meter a1 is larger than the voltage restoration parameter
a0 (Figure 5H). Further, the larger this discrepancy, the more
easily the receptor is able to rise to its maximum spike
frequency of Smax = 200 Hz.

Pulsatile stimuli

Empirical data indicate that odor stimuli often take the
form of turbulent odor plumes containing discrete packets
of odor. Thus, as an insect flies through or along an odor
plume or an odor plume is transported over a stationary
insect, the packets of odor are perceived as a sequence of
pulses of varying pulse and inter-pulse duration (Murlis
et al., 1992; Vickers and Baker, 1994). If the inter-pulse
intervals are short compared with the constants charac-
terizing the response of the ORNs, we can expect the ORNs
to smooth out the pulses, while if the inter-pulse intervals
are relatively large, then each pulse should be transparent
to the system (Lemon and Getz, 1997). By comparing
model output to empirical data on the response of ORNs to
pulsatile stimuli, one can test whether the time constants
in the model are compatible with observed data. The
simulation results presented in Figure 6 provide some
insight into how model output changes for changes in
selected rate constants.

The specific set of ORN parameters used to fit the
cockroach data presented in Figure 4 smooth out pulsatile
square wave stimuli of amplitude 2 oscillating at frequencies
of 40 Hz or higher (Figure 6A). Once these pulsatile stimuli
have dropped to frequencies of ~15 Hz, the oscillations are
evident in the simulations (Figure 6B), although in real
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ORNs noise may mask these oscillations in individual
response profiles. At frequencies of ~5 Hz (Figure 6C), the
oscillations are strongly evident and unlikely to be masked
by noise, even in individual ORNs.

Real populations of cockroach olfactory receptor neurons
appear to be able to follow to some extent oscillations of
20 Hz and even 40 Hz (Lemon and Getz, 1997). One of
the reason our simulated receptors are not able to follow
frequencies much higher than 10 Hz is in part due to the fact
that the offset response (at the end of each square wave)
is too slow. The offset response rate can be increased by
decreasing the value of Vcrit. This, however, would lead to a
significant decrease in the spike rate (Figure 5G), which can
be compensated by reducing the value of k–3 and the ratio of
a0 to a1. Further the absolute values of both these para-
meters can be increased so that the voltage can more
accurately follow changes in the densitiy of the activated
ligand–receptor complexes. Responses of ORNs modeled by
equations (1)–(6), using the standard parameter set used to
generate Figure 6A–C, with the modifications k–3 = 10, a0 =
50, a1 = 1000 and Vcrit = –10, produces output that clearly
follow 4 and 15 Hz pulses (Figure 6E,F). Populations of
these ORNs would even follow 40 Hz pulses in populations
of neurons if the signal-to-noise ratio were not too large
(Figure 6D).

Synergism and inhibition

Many insects and crustacean chemosensory receptors exhibit
synergistic or inhibitory characteristics when responding to
mixtures of several odorants or stimulants (Daniel and
Derby, 1988, 1991a, 1991b; Derby et al., 1991; Fine-Levy
and Derby, 1992; Getz and Akers, 1995). Inhibition is
particularly widespread in arthropods and is thought to be
associated with IPs second messenger pathways (Ache and
Zhainazarov, 1995; Daniel et al., 1996). The phenomena of
synergism and inhibitions have been defined in several
different ways, some more useful than others (Getz and
Akers, 1995).

Interactions between odorants in generating a response
rate S in an olfactory receptor neuron can occur at several
different levels. First, two ligands may compete directly for
binding sites on the same receptor molecules. Second, dif-
ferent ligands may bind with different receptor molecules on
the dendritic membrane of the same receptor neuron and
these bound ligand–receptor complexes may be activated
by the same set of enabling molecules; third, by a partially
overlapping set of enabling molecules; or, fourth, by a
non-overlapping set of enabling molecules. Fifth, even if
two different ligands initiate distinct second messenger
cascades, the final products of these cascades may open the
same ion channels or, sixth, different ion channels in the
receptor cell membrane.

In the last case, one ligand may lead to depolarization and
the other to hyperpolarization of the receptor neuron mem-
brane. The voltage model developed here is easily extended

to include hyperpolarizing pathways. Specifically, the
depolarizing and hyperpolarizing pathways can each be
modeled by a set of equations [equations (1)–(5) in the
Appendix] with variables and parameters subscripted (or
double subscripted if already subscripted) to indicate the
pathway in question. Thus, in this case, for i = 1, 2, we can
have Ai(Li,t) representing the density of activated ligand–
receptor complex at time t when the density of ligands i in
the perireceptor space has the time profile Li(t) = Li. If we
now assume that depolarizing, restorative and hyperpolar-
izing ionic channel and pump processes compete to drive the
voltage to the respective levels Vdep > Vrest > Vhyp (note that
the resting membrane potential Vrest is negative in neurons)
at rates that are proportional to the voltage gradients
involved and, additionally, the depolarizing and hyper-
polarizing rates are respectively proportional to the densities
of the activated ligand–receptor complexes A1(L1,t) and
A2(L2,t), then the membrane voltage [equation (6)] can be
extended to include both pathways [equation (9) in the
Appendix]. Unfortunately, no appropriate data exist to
explore how well this extension is able to simulate the
response of olfactory receptor cells containing both types
of pathways, so a test of the extended model remains a
tantalizing opportunity for future studies.

Finally, from an olfactory coding perspective, it may be
more important for the model to fit data over some parts of
the response profile than others. For example, honey bee
ORN  data  (Getz  and  Akers, 1992), which exhibit peak
response rates occurring, as with the cockroach, during the
interval 50–150 ms after the onset of each stimulus (Figure
4), appear to code more information during this peak
response period than during post-peak period of 150–250ms
(Getz and Akers, 1997b). If this situation also applies to
cockroach ORN data, then it is more critical that the model
fits the data over the interval 50–150 ms after the onset of a
stimulus than over time intervals much beyond this par-
ticular window of time.

Conclusion
Chemical signaling processes based on G-protein associated
receptor transduction mechanisms incorporate complex
second messenger cascades involving many tens of inter-
actions and synthesis of intermediate products, not to
mention links to more general cellular processes involving
the cycling of such energy resources as ATP, and all-purpose
messenger molecules such as cAMP and Ca2+. A precise
model for the generation of membrane voltage profiles, and
hence spiking behavior, of ORNs would require that all
the essential details of the associated second messenger
cascades be known. Thus a precise model is not yet feasible,
since many details remain to be worked out. Further, as long
as a complete description of all cellular processes competing
for critical energy and messenger molecules is not included
in the model, simplifying assumptions need to be made

W.M. Getz 505



to obtain workable models of the response of ORNs to
stimulation. These assumptions may be reasonable if the
processes modeled by equations are orders of magnitude
faster or larger than those subsumed under postulates of
constant background levels, constant fluxes, or phenomeno-
logically specified relationships, such as the one postulated
in equation (4).

Most ORN response models in the literature have been
either been applicable to cells that respond to single odor-
ants (such as pheromone receptors in insects), or to general
olfactory cells stimulated by odorants rather than complex
odor stimuli. Some models do consider stimulation by
complex odor stimuli but, as in Malaka et al. (Malaka et al.,
1995), they only consider the equilibrium situation, they do
not model the membrane voltage and they do not consider
nonlinearities arising from the ligand–receptor activation
process being limited by ATP, G-proteins, or other enabling
molecules ([f. equation (4)]. Also, many studies focus on the
equilibrium (tonic) rather than transitory (phasic) proper-
ties of response neurons (Rospars et al., 1996), despite the
fact that the phasic response in general olfactory receptors
in insects lasts at least 200 ms (Lemon and Getz, 1997). This
phasic period is not much shorter than the time it takes
worker honey bees, for example, to discriminate different
odors (Smith and Menzel, 1989).

Although many details of the pathway involved in
transducing olfactory signals into electrical responses in
insect and other animal olfactory sensory neurons are not
known, and a number of simplifying assumptions were
made in developing the model presented here, the model
captures exceptionally well the  spike rate  of cockroach
olfactory neurons to pulsatile odors. More detailed
empirical data on the response of neurons to pure and
mixed odor stimuli with various concentration profiles (for
example, both square and triangular shaped pulses) are
required to provide a richer array of patterns for fitting the
model. Also, more details on the various transduction path-
ways are needed before we can assess how well a nonlinear
relationship, such as portrayed in equation (4), is really able
to encapsulate the complex array of processes associated
with signal transduction by ORNs.
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Appendix

Glossary of symbols

Independent variable
t—time (scaled so that k2* = 1)

System variables
The dynamics of each variable is modeled by its own differential
equation.
A—density of activated ligand–receptor complexes
B—density of ‘bound-but-not-yet-activated’ ligand–receptor com-
plexes
L—density of free ligands available for binding
M—density of ‘enabling molecules’ facilitating the ligand–
receptor activation process
V—membrane voltage of olfactory receptor neuron

Auxiliary variables
R—density of membrane receptors normalized to 1 so that all
related densities are in ‘membrane-receptor-density’ units
Lin(t)—ligand input flux as a function of time t
S(t)—spike rate of olfactory receptor neuron as a function of time
t
S(t1,t2)—average spike rate over the interval [t1,t2]
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U—density of unbound receptors, U = R – B – A

Rate parameters

a0—rate at which membrane voltage decays back to resting state
a1—rate at which membrane voltage depolarizes
a2—rate at which membrane voltage hyperpolarizes (two pathway
model only)
k0—rate at which ligands enter the perireceptor space; if it is
assumed that k0 → ∞, this is equivalent to assuming L(t) = Lin(t)
k–0—rate at which ligands exit the perireceptor space; it is assumed
k–0 = 0—positive k–0 is not needed to prevent the pooling of active
ligands in the perireceptor space because, after dissociating from
receptors, ligands are assumed to be transformed to a degraded
state
k1—rate at which ligand and receptors associate to form a bound-
but-not-yet-activated complex
k–1—rate at which bound-but-not-yet-activated ligand–receptor
complexes disassociate
k2*—maximum rate at which bound-but-not-yet-activated ligand–
receptor complexes become activated; the actual activation rate k2
is a function of the enabling molecule density M [see equation (4)
below]; note that time is scaled so that k2* = 1
k–2—rate at which activated ligand–receptor complexes disassoci-
ate to leave behind a degraded ligand molecule
k3—rate at which enabling molecules are replenished when their
density is very low
k–3—rate at which enabling molecules are used in ligand–receptor
activation process

Scaling parameters
M0—resting or saturation density for enabling molecules
M1/2—half-saturation or Michaelis–Menten constant in the
Monod activation rate function k2(M/B) (see equation 4)
Smax—maximum spiking rate (set to 200 spikes/s)
t—spike generation time delay
Vrest—cell membrane resting voltage (set to –50 mV)
Vdep—maximum voltage to which cell membrane can be depolar-
ized (set to +50 mV)
Vcrit—depolarization threshold for spiking to occur
Vhyp—minimum voltage to which cell membrane can be hyper-
polarized

Model equations

From the processes described in the text, it follows that the kinetic
equations for L, B and A are (Lánsky and Rospars, 1999)

(1)

(2)

(3)

For the case where the association rate k2 is a Monod function of
the ratio M/B rather the density M itself we have:

(4)

[The time argument t on the right-hand side is included to stress
that k2 varies with time as M and B vary with time. Note that ratio
M/B does not appear explicitly on the right-hand side of equation
(4) because we have multiplied the top and bottom by B.]
From the assumptions in the text, the density M of these enabling
molecules is modeled by the equation

(5)

The dynamics of the membrane voltage depends on the current
voltage state and the number of activated receptors and is modeled
by the equation

(6)

A clipped linear time-delay relationship between voltage and
spiking rate, as described in the text, is given by

(7)

Hence the average spiking rates over intervals [t1,t2] is

(8)

In the case where two pathways exist, each satisfying a set of
equations (1)–(5) that determine the densities of corresponding
activated ligand–receptor complexes A1(L1,t) (depolarizing path-
way) and A2(L2,t) (hyperpolarizing pathway), then the membrane
voltage will be governed by the equation
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