
COMPREHENSIVE EXAMINATION
Math 650 / Optimization / August 2009

Name

INSTRUCTIONS: (i) Choose one problem from the set {1, 2} (40 points), and two
problems from the set {3, 4, 5} (60 points). Please mark clearly which problems you would
like to be graded!

1. Consider the optimization problem

min xyz

subject to x+ y + z = 0,
x2 + y2 + z2 = 1.

Find the solution of this nonlinear program by completing the following, incremental, steps.
(a) Give a theoretical reason as to why every local minimizer must satisfy the KKT condi-
tions.
(b) Form the Lagrangian function

L(x, y, z, λ, µ) = xyz + λ(x+ y + z) + µ(x2 + y2 + z2 − 1),

where λ and µ are the multipliers; write the KKT conditions.
(c) Use the KKT conditions to show that 3xyz = −2µ, and argue that we must have µ > 0.
Hint: We are minimizing xyz!
(d) Use the KKT conditions to show that

x(λ+ 2µx) = y(λ+ 2µy) = z(λ+ 2µz) = −xyz =
2µ
3
,

and argue that x, y, z must be the roots of the equation

u2 + γu− 1
3

= 0, (1)

where γ = λ
2µ .

(e) Using (c) and the KKT conditions, argue that if (x∗, y∗, z∗) is an optimal solution with
x∗ ≤ y∗ ≤ z∗, then x∗ < 0 < y∗ ≤ z∗. Then use (d) to show that y∗ = z∗.
(f) Using (1) argue that y∗ = z∗ = −(x∗+ y∗) = γ, and that x∗y∗ = −1/3 so that x∗ = −1

3γ .
(g) Use x∗ + y∗ + z∗ = 0 to show that y∗ = z∗ = γ = 1√

6
, and x∗ = −2√

6
.

2. Consider the optimization problem

max x2 + y2

s.t. x2 − y2 ≥ 1
x ≤ 3

(a) Sketch the feasible region.
(b) Write the Fritz John conditions for the critical point(s) of the problem.
(c) Show that every Fritz John point must satisfy the KKT conditions.
(d) Determine which of the following three points satisfy the KKT conditions: A. (−1, 0),
B. (3, 0), C. (3,−2

√
2).

(e) Determine whether C. is a local maximizer; use second order conditions for this purpose.
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3. Answer fully two of the following three, unrelated questions, clearly indicating your
choices.
(a) State Jensen’s inequality for a convex function f : Rn → R. Assuming its truth, state
and prove the characterization of equality in Jensen’s inequality when f is a strictly convex
function.
(b) Let C ⊆ Rn be a closed convex set, and denote by ΠC(x) the projection of x onto C.
(That is, ΠC(x) is the unique solution to the problem min{||z − x||2 : z ∈ C}.) State the
variational inequality which characterizes ΠC , and use it to prove that πC is non–expansive,
that is,

||πC(x)− πC(y)|| ≤ ||x− y||, x, y ∈ Rn.

(c) Let P1, P2 ⊆ Rn be two convex polyhedra. Prove that the Minkowski sum P1 + P2 is
also a convex polyhedron.

4. Consider the set K := {x : Ax < 0} where A is an m× n matrix.
(a) Show, by elementary arguments (that is, using no convexity), that K = ∅ if and only if

{y ∈ Rm : yi < 0, i = 1, . . . ,m} ∩ {Ax : x ∈ Rn} = ∅. (1)

(b) Assuming (1) is true, show by a separation argument, that there exists a ∈ Rm satisfying

a ≥ 0, a 6= 0, ATa = 0. (2)

(c) Combine (a) and (b) to prove that {x : Ax < 0} = ∅ if and only if the zero vector is in
the convex hull of the rows of A.

5. Answer the following, unrelated, questions.
(a) Consider the “diamond” D in the plane with vertices at the points (1, 0), (0, 1), (−1, 0)
and (0,−1). Describe D by four linear inequalities; use this to determine the polar D of,
D∗ where

D∗ = {y ∈ R2 : 〈x, y〉 ≤ 1, ∀x ∈ D}.

Hint: use Farkas Lemma.
(b) Formulate the following min-max problem as a linear program:

min
x∈Rn

max
1≤i≤m

aTi x+ bi.
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