COMPREHENSIVE EXAMINATION

Math 650 / Optimization / January 2007
(Prepared by Dr. O. Güler)

Name \qquad

INSTRUCTIONS: (i) You must solve
(i) One problem from the problem set 1, 2 (33 points);
(ii) Problem 3 (34 points); and
(iii) One problem from the set 4,5 (33 points).

Please mark clearly which problems you would like to be graded. (Otherwise, Problems 2, 3, and 4 will be graded.)

1. Consider the optimization problem

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=1, \quad(P) \\
& x_{i} \geq 0, i=1, \ldots, n
\end{array}
$$

Suppose that a point $x^{*}=\left(\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \geq 0\right.$ solves the above problem. Define $g_{i}:=f_{i}^{\prime}\left(x_{i}^{*}\right)$. Show that there exists a scalar k such that

$$
g_{i} \geq k, \text { and }\left(g_{i}-k\right) x_{i}^{*}=0, \quad \text { for } i=1, \ldots, n
$$

2. Define

$$
e_{1}=(1,0, \ldots, 0)^{T} \in \mathbb{R}^{n}, \quad e_{1}=(1,1, \ldots, 1) \in \mathbb{R}^{n}, \quad c=e / n=(1 / n, 1 / n \ldots, 1 / n)^{T} \in \mathbb{R}^{n}
$$

Consider the optimization problem

$$
\begin{array}{ll}
\min & y_{1}=\left\langle e_{1}, y\right\rangle \\
\text { s.t. } & \|y-c\|^{2} \leq \frac{1}{n(n-1)}, \tag{Q}\\
& \langle e, y\rangle=1
\end{array}
$$

(a) Write the KKT optimality conditions.
(b) Verify that $\left(0, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)^{T}$ is an optimal solution to (Q).
(c) Prove that the solution in (b) is the unique optimal solution to (Q).
3. Consider the optimization problem

$$
\min \left\{-\sum_{i=1}^{n} \ln x_{i}: \sum_{i=1}^{n} x_{i}=1, \quad(P)\right.
$$

(a) Show that the optimal solution is $x^{*}=(1 / n, \ldots, 1 / n)^{T}$.
(b) Formulate the dual (D) of problem (P). Find the dual optimal solution λ^{*}. State the strong duality theorem and justify rigorously whether it is true in this case.
(c) Recall that the arithmetic-geometric mean inequality (AGM) is

$$
\prod_{i=1}^{n} x_{i}^{1 / n} \leq \frac{\sum_{i=1}^{n} x_{i}}{n}, \quad x_{i}>0, i=1, \ldots, n
$$

Show how to prove (AGM) using part (a).
4. Consider the cone $K \subset \mathbb{R}^{3}$ whose points satisfy the linear inequalities

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & \leq 0 \\
x_{3} & \geq 0 \\
2 x_{1}-x_{2}+x_{3} & \geq 0
\end{aligned}
$$

(a) Give the definition of the dual (polar) cone of a general convex cone C.
(b) Use Farkas Lemma or otherwise to explicitly compute the dual cone of K above.
5. (a) Give the definition of a strictly convex function.
(b) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a strictly convex function, and $x_{i} \in \mathbb{R}^{n}, \lambda_{i}>0$ for $i=1,2, \ldots, k$ and $\sum_{i=1}^{k} \lambda_{i}=1$. If

$$
f\left(\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k}\right)=\lambda_{1} f\left(x_{1}\right)+\ldots+\lambda_{k} f\left(x_{k}\right)
$$

then show that $x_{1}=x_{2}=\ldots=x_{k}$.

