
COMPREHENSIVE EXAMINATION
Math 650 – Optimization

August 1998
You must show all your work for full credit!

INSTRUCTIONS:
You must do problem 1 (35 points). Do either 2 or 3 (30 points), and either 4 or 5 (35 points),
for a total of 3 problems and 100 points. You may do either 6 or 7 for extra credit (5 points).

Q1. Consider the optimization problem

min r

subject to x2
1 + x2

2 − r ≤ 0
(x1 − 3)2 + x2

2 − r ≤ 0
(x1 − 2)2 + (x2 − 1)2 − r ≤ 0.

(a) Show that the above problem is exactly the problem of finding the smallest circle that
contains the points (0, 0), (3, 0), and (2, 1) in the plane (or the triangle determined by
these points). Obviously r is the square of the radius of the circle. What do the variables
(x1, x2) correspond to?

(b) Write the Lagrangian for the problem using the multiplier λi for the ith constraint, i =
1, 2, 3. Explane why λ0 can be assumed to be 1 in the Fritz John conditions. Then
write down the KKT conditions, including the complementarity conditions. Use the KKT
conditions to verify that λi’s add up to one, express x1, x2 in terms of the multipliers λi.
Finally, show that the optimal x∗i ’s are non–negative.

(c) Show that at least one multiplier must be zero by demonstrating that assumption that they
are all non–zero leads to the contradiction that one of the variables x∗i < 0.

(d) Show that assumptions λ2 = 0, and λ1 6= 0, λ3 6= 0 lead to contradiction.

(e) Similarly, one can show that the assumptions λ1 = 0, λ2 6= 0, λ3 6= 0 lead to a contra-
diction (do not show this). Use all the information so far to find the optimal solution(s)
(x∗1, x

∗
2, r

∗, λ∗1, λ
∗
2, λ

∗
3) to the optimization problem.

(f) Give a theoretical reason as to why the optimal solution you found above is the global
one(s).
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Q2. Let C ⊆ Rn be a closed, convex set and x ∈ Rn a point such that x /∈ C. Recall that the
projection πC(x) is the (unique) point in C that is closest to x, i.e., ||x− πC(x)|| ≤ ||x− z|| for
all z ∈ C. Also recall that the distance from x to C is dC(x) := ||x− πC(x)||.

(a) Write the variational inequality which gives a characterization of πC(x).

(b) Show that if D ⊇ C is a closed convex set, then dD(x) ≤ dC(x). Conclude that if the
halfspace

H−
d,α := {z ∈ Rn : 〈d, z〉 ≤ α}, d 6= 0,

contains C, then dH−d,α
(x) ≤ dC(x).

(c) Show that the variational inequality in (a) implies

(i) C ⊆ H−
d,α, (ii) dC(x) = dH−d,α

(x),

where d = x− πC(x) and α = 〈d, πC(x)〉.

(d) Show that all these lead to the following, geometrically appealing “duality” result: the
shortest distance from a point x to a convex set C not containing x is equal to the maximum
among the distances from x to half spaces containing C.

Q3. Recall that the polar of a convex set C ⊆ Rn is the set

C∗ = {y ∈ Rn : 〈y, x〉 ≤ 1, ∀x ∈ C}.

(a) Show that if C is a convex body (a compact convex set) containing zero in its interior
(0 ∈ C0), then so is C∗.

(b) Show that if C is convex body containing zero in its interior, then C∗∗ ⊆ C. (Since C ⊆ C∗∗

(do not show this), this implies C∗∗ = C.) Hint: use a separation argument.

(c) Show that if P := {x : Ax ≤ b} is a polyhedron, then P ∗ is also one, and describe P ∗. Hint:
use affine Farkas Lemma.
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Q4. In the quadratic program

min{1
2
xT Qx + cT x : Ax ≤ b},

Q is an n× n symmetric, positive definite matrix. Write the Lagrangian function and use it to
determine the dual program. In particular, show that the dual program can be written in the
form

max{1
2
yT Ry + dT y : y ≥ 0},

where R is an n× n symmetric matrix and d ∈ Rn.

Q5. Solve, that is, find the optimal solution(s) to the constrained minimization problem

min
x1

x2
+

x2

x3
+

x3

x1

subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

(a) By forming the Lagrangian and setting up the Karush–Kuhn–Tucker (KKT) conditions,

(b) By making the substitutions xi = eti and then solving the unconstrained minimization
problem in the variables t1, t2, t3,

(c) By applying the arithmetic–geometric mean (AGM) inequality to the objective function in
either (a) or (b). State the AGM inequality first!

(d) The original problem is not a convex program. Yet, the optimal solution(s) you found is
(are) global one(s). Why is this so, give a reason.
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Q6. Let f : Rn → R be a continuously differentiable function. It is well–known that f is a
convex function if and only if

f(y) ≥ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ Rn. (1)

Show that (1) is equivalent to

〈∇f(y)−∇f(x), y − x〉 ≥ 0, ∀x, y ∈ Rn. (2)

Hint: To prove (2) implies (1), use the mean value theorem to f , then apply (2).

Q7. Let P := {x : Ax ≤ b} be a polytope (bounded polyhedron) where A is an m× n matrix.
Show that the rows {a1, . . . , am} of A span Rn. Hint: pick a basis {c1, . . . , cn} for Rn. Formulate
the duals of the linear programs {max cT

i x : Ax ≤ b} and invoke the LP duality.
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