MASTER'S COMPREHENSIVE EXAM IN Math 603 -MATRIX ANALYSIS January 2016

Do any three problems. Show all your work. Each problem is worth 10 points.

- Q1 Let $f: \mathbb{R}^n \to \mathbb{R}$ be such that (i) $f(x) \geq 0$ for all $x \in \mathbb{R}^n$; (ii) for any $\lambda \in \mathbb{R}$, $f(\lambda x) = |\lambda| f(x)$ for all $x \in \mathbb{R}^n$; and (iii) $f(x+y) \leq f(x) + f(y)$ for any $x, y \in \mathbb{R}^n$. (Such an f is called a seminorm on \mathbb{R}^n .) Let W be the zero set of f, i.e., $W := \{x \in \mathbb{R}^n \mid f(x) = 0\}$.
 - (a) Show that W is a subspace of \mathbb{R}^n .
 - (b) Show that f is a norm on \mathbb{R}^n if and only if $W = \{0\}$.
 - (c) Suppose W is a proper subspace of \mathbb{R}^n , and let W^{\perp} be the orthogonal complement of W. Show that for any $x \in \mathbb{R}^n$, there exists a unique $u_x \in W^{\perp}$ such that $f(x) = f(u_x)$. Furthermore, show that $\{u \in W^{\perp} | f(u) = 0\} = \{0\}$.
- **Q**2 Solve the following problems.
 - (a) Let P be a symmetric positive semidefinite matrix such that $P^{100} = P^{20}$. Show that $\operatorname{rank}(P) = \operatorname{trace}(P)$.
 - (b) Let P be an $n \times n$ symmetric real matrix, and $c \in \mathbb{R}^n$. Suppose that $\{x^T P x + c^T x \mid x \in \mathbb{R}^n\}$ is bounded below. Show that P is positive semidefinite, and c is in the range of P.
- Q3 Let A be an $n \times n$ real matrix, prove that
 - (a) A is skew-symmetric if and only if $A^2 = -AA^T$.
 - (b) The matrix e^A is orthogonal if A is skew-symmetric.
- Q4 Prove the following two statements:
 - (a) For matrices A, B and C such that AB, BC and ABC are all well-defined, prove that $rank(AB) + rank(BC) \le rank(B) + rank(ABC)$.
 - (b) Let A be an $n \times n$ matrix. Suppose that there exists a natural number N such that

$$rank(A^N) = rank(A^{N+1}),$$

prove that

$$rank(A^{N}) = rank(A^{N+1}) = rank(A^{N+2}) = rank(A^{N+3}) = \cdots$$

- Q5 Consider the vector space $R^{n\times n}$ of all real $n\times n$ matrices.
 - (a) By describing a basis, find the dimension of $R^{n \times n}$.
 - (b) Given any $A \in \mathbb{R}^{n \times n}$, show that $S(A) := span\{I_n, A, A^2, A^3, \ldots\}$ is a subspace of $\mathbb{R}^{n \times n}$. When n > 1, can this subspace be equal to $\mathbb{R}^{n \times n}$?
 - (c) If A is invertible, show that $S(A^{-1}) = S(A)$.