Masters Comprehensive Exam in Matrix Analysis (Math 603) August 2013

Do any three problems. Show all your work. Each problem is worth 10 points.

1. Let V be a real inner-product product space and let V_1 , V_2 be two subspaces of V. The addition of two vectors, the multiplication of a vector with a real number, and the inner product of two vectors in V are denoted by the usual symbols, e.g., u + v, 3u, $\langle u, v \rangle$. The norm of a vector $v \in V$ is given by $||v|| = \sqrt{\langle v, v \rangle}$. a) Prove that the Cartesian product $W = V_1 \times V_2$ endowed with the operations

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2), \quad \forall \ u_1, v_1 \in V_1, u_2, v_2 \in V_2, (\alpha + i\beta)(u_1, u_2) = (\alpha u_1 - \beta u_2, \beta u_1 + \alpha u_2), \quad \forall \ u_1, \in V_1, u_2 \in V_2, \alpha, \beta \in \mathbb{R}$$

is a complex vector space.

b) Is the functional $\langle \langle \cdot, \cdot \rangle \rangle : W \times W \to \mathcal{C}$ defined by

$$\langle \langle (u_1, u_2), (v_1, v_2) \rangle \rangle = \langle u_1, v_1 \rangle + i \langle u_2, v_2 \rangle$$

a complex inner-product on W? Explain why.

c) Show that the functional $\|\cdot\|: W \to \mathbb{R}_+$ given by

$$||u|| = ||(u_1, u_2)|| = \sqrt{\langle u_1, u_1 \rangle + \langle u_2, u_2 \rangle}, \quad \forall \ u = (u_1, u_2) \in W,$$

is a norm on W.

d) Prove that there is an inner-product $\langle \cdot, \cdot \rangle$ on W which induces the norm defined in c), i.e., $||v||^2 = \langle v, v \rangle, \forall v \in W.$

2. Consider the vectors

$$a = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ u = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \ v = \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}, \ w = \begin{bmatrix} 1\\-1\\2\\1 \end{bmatrix}, \ e_1 = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \ e_2 = \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}.$$

a) What is the dimension of the subspace $H = Span\{u, v, w\}$?

b) Find the orthogonal projection of a on H.

c) Find $\min_{x \in H} ||a - x||_2$.

d) Let A be a 3×4 -matrix such that Au = 0, Aw = 0, $Ae_1 = [1, -2, 3]^T$, $Ae_2 = [-2, 4, -6]^T$. What are the nullspace and the column space of A^T ?

3. Let u and v be two (column) vectors in \mathbb{R}^n with all components positive and let $\langle u, v \rangle$ denote the usual inner product.

- (a) Find all eigenvalues of the matrix uv^T .
- (b) Find all eigenvalues of $I_n + uv^T$, where I_n is the $n \times n$ identity matrix.
- (c) Show that all off-diagonal entries of $(I_n + uv^T)^{-1}$ are negative.

4.

- (a) Let A be an $n \times m$ matrix and B be an $m \times p$ matrix. Suppose rank(AB) = m. Prove that rank(A) = rank(B) = m.
- (b) Let A be an $n \times n$ matrix. Prove that $A^2 = I_n$ if and only if $rank(I_n + A) + rank(I_n A) = n$.

5. Let A be an $n \times n$ real-valued matrix and $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a basis of \mathbb{R}^n . Suppose that α_i is an eigenvector of A for each $i = 1, \dots, n$ and A has different eigenvalues. Prove that there exists a vector v in \mathbb{R}^n such that $\{v, Av, A^2v, \dots, A^{n-1}v\}$ is also a basis of \mathbb{R}^n .