Masters Comprehensive Exam in Matrix Analysis (Math 603) August 2013

Do any three problems. Show all your work. Each problem is worth 10 points.

1. Let V be a real inner-product product space and let V_{1}, V_{2} be two subspaces of V. The addition of two vectors, the multiplication of a vector with a real number, and the inner product of two vectors in V are denoted by the usual symbols, e.g., $u+v, 3 u,\langle u, v\rangle$. The norm of a vector $v \in V$ is given by $\|v\|=\sqrt{\langle v, v\rangle}$.
a) Prove that the Cartesian product $W=V_{1} \times V_{2}$ endowed with the operations

$$
\begin{aligned}
& \left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}\right), \quad \forall u_{1}, v_{1} \in V_{1}, u_{2}, v_{2} \in V_{2}, \\
& (\alpha+i \beta)\left(u_{1}, u_{2}\right)=\left(\alpha u_{1}-\beta u_{2}, \beta u_{1}+\alpha u_{2}\right), \quad \forall u_{1}, \in V_{1}, u_{2} \in V_{2}, \alpha, \beta \in \mathbb{R},
\end{aligned}
$$

is a complex vector space.
b) Is the functional $\langle\langle\cdot, \cdot\rangle\rangle: W \times W \rightarrow \mathscr{C}$ defined by

$$
\left\langle\left\langle\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle\right\rangle=\left\langle u_{1}, v_{1}\right\rangle+i\left\langle u_{2}, v_{2}\right\rangle
$$

a complex inner-product on W ? Explain why
c) Show that the functional $\|\cdot\|: W \rightarrow \mathbb{R}_{+}$given by

$$
\|u\|=\left\|\left(u_{1}, u_{2}\right)\right\|=\sqrt{\left\langle u_{1}, u_{1}\right\rangle+\left\langle u_{2}, u_{2}\right\rangle}, \quad \forall u=\left(u_{1}, u_{2}\right) \in W,
$$

is a norm on W.
d) Prove that there is an inner-product $\langle\cdot, \cdot\rangle$ on W which induces the norm defined in c), i.e., $\|v\|^{2}=\langle v, v\rangle, \forall v \in W$.
2. Consider the vectors

$$
a=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], u=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], v=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right], w=\left[\begin{array}{c}
1 \\
-1 \\
2 \\
1
\end{array}\right], e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

a) What is the dimension of the subspace $H=\operatorname{Span}\{u, v, w\}$?
b) Find the orthogonal projection of a on H.
c) Find $\min _{x \in H}\|a-x\|_{2}$.
d) Let A be a 3×4-matrix such that $A u=0, A w=0, A e_{1}=[1,-2,3]^{T}, A e_{2}=[-2,4,-6]^{T}$.

What are the nullspace and the column space of A^{T} ?
3. Let u and v be two (column) vectors in \mathbb{R}^{n} with all components positive and let $\langle u, v\rangle$ denote the usual inner product.
(a) Find all eigenvalues of the matrix $u v^{T}$.
(b) Find all eigenvalues of $I_{n}+u v^{T}$, where I_{n} is the $n \times n$ identity matrix.
(c) Show that all off-diagonal entries of $\left(I_{n}+u v^{T}\right)^{-1}$ are negative.
4.
(a) Let A be an $n \times m$ matrix and B be an $m \times p$ matrix. Suppose $\operatorname{rank}(A B)=m$. Prove that $\operatorname{rank}(A)=\operatorname{rank}(B)=m$.
(b) Let A be an $n \times n$ matrix. Prove that $A^{2}=I_{n}$ if and only if $\operatorname{rank}\left(I_{n}+A\right)+\operatorname{rank}\left(I_{n}-A\right)=n$.
5. Let A be an $n \times n$ real-valued matrix and $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ be a basis of \mathbb{R}^{n}. Suppose that α_{i} is an eigenvector of A for each $i=1, \cdots, n$ and A has different eigenvalues. Prove that there exists a vector v in \mathbb{R}^{n} such that $\left\{v, A v, A^{2} v, \cdots, A^{n-1} v\right\}$ is also a basis of \mathbb{R}^{n}.

