MASTER'S COMPREHENSIVE EXAM Math 603 - MATRIX ANALYSIS

August 2022

Solve any three problems and show your work. Please indicate which problems you are submitting for grading. Each problem is worth 10 points.

Q1. Let that A be an $m \times n$ and B be an $n \times p$ matrix.
(a) Show that if $\operatorname{rank}(A)=n$, then $\operatorname{rank}(A B)=\operatorname{rank}(B)$ and $N(A B)=N(B)$.
(b) Show that if $\operatorname{rank}(B)=n$, then $\operatorname{rank}(A B)=\operatorname{rank}(A)$ and $R(A B)=R(A)$. Interpret the result in terms of composition of surjective linear maps.

Q2. Let \mathcal{P}_{2} be the vector space of quadratic polynomials with real coefficients with basis $\mathcal{B}_{1}=$ $\left\{1, x, x^{2}\right\}$, and $x_{0}<x_{1}<x_{2}$ be three real numbers. We define the function $T: \mathcal{P}_{2} \rightarrow \mathbb{R}^{3}$ by $T(p)=\left[p\left(x_{0}\right), p\left(x_{1}\right), p\left(x_{2}\right)\right]^{T}$.
(a) Show that the function T is linear, and compute the matrix $[T]_{\mathcal{B}_{1}, \mathcal{B}_{2}}$ where \mathcal{B}_{2} is the standard basis in \mathbb{R}^{3}.
(b) Prove that $\operatorname{dim}(N(T))=0$.
(c) Use the result at (b) to show that for every three numbers a_{0}, a_{1}, a_{2} there exists a quadratic polynomial q so that $q\left(x_{i}\right)=a_{i}, i=0,1,2$.

Q3. Let X and Y be two complementary subspaces of \mathbb{R}^{n}, that is, $X+Y=\mathbb{R}^{n}, X \cap Y=\{0\}$. Let $\mathcal{B}_{X}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a basis in X, and $\mathcal{B}_{Y}=\left\{u_{k+1}, \ldots, u_{n}\right\}$ be a basis in Y, and P the matrix representing the projection on X along Y (i.e., $P(x+y)=x$ if $x \in X, y \in Y$).
(a) Show, using the definition, that $\mathcal{B}=\mathcal{B}_{X} \cup \mathcal{B}_{Y}$ is a basis in \mathbb{R}^{n}.
(b) Show that P is similar to a diagonal matrix using a transformation involving the basis vectors in \mathcal{B}_{X} and \mathcal{B}_{Y}.
(c) Show that $\operatorname{trace}(P)=\operatorname{rank}(P)$.

Q4. Let A be an $r \times r$ real valued matrix, and I be the $r \times r$ identity matrix.
(a) Prove that if the entries of A satisfy $\sum_{j=1}^{r}\left|A_{i j}\right|<1$ for each $i=1,2, \ldots, r$, then $I+A$ is invertible.
(b) Prove that if A satisfies $A^{T}=-A$, then $\operatorname{det}(a I+A) \neq 0$ for all $a \in \mathbb{R} \backslash\{0\}$.

Q5. Let A be an $n \times n$ real matrix for which there is a vector $m \in \mathbb{R}^{n}$ with non-zero entries ($m_{i} \neq 0$ for all $i=1,2, \ldots n$) so that they satisfy

$$
2\left|A_{i i} m_{i}\right|>\sum_{j=1}^{n}\left|A_{i j} m_{j}\right|, \forall i=1, \ldots, n
$$

(a) Define the matrix B by $B_{i j}=A_{i j} m_{j}, 1 \leq i, j \leq n$ and show that B is strictly diagonally dominant.
(b) Use your result at (a) to show that A is non-singular.

