Comprehensive Examination
 Statistics 653-Basic Probability
 100 points

August 23, 2022 (9:30 am-1:00 pm)

Name: \qquad

- You can use only calculator, but not cell phone
- You must show all proof details/calculations which lead to the answer

Q1. [12 points]
X_{1}, \cdots, X_{n} are iid with $f(x \mid \theta)=\theta x^{\theta-1} 0<x<1$ and $\theta>0$. Derive the MLE $\hat{\theta}$ of θ and compute its asymptotic variance. Does it attain the RCLB? If not, compute its efficiency.

Q2. [12 points]
X_{1}, \cdots, X_{n} are iid $U\left[\theta-\frac{1}{2}, \theta+\frac{1}{2}\right]$.
(a) Prove that the MLE of θ is not unique.
(b) Suggest an MLE of θ which is also unbiased and compute its variance.

Q3. [12 points]
A box contains N balls marked $1, \cdots, N$. In order to test $H_{0}: N=M$ versus $H_{1}: N<M, n$ balls are randomly drawn from the box, and a test procedure rejects H_{0} if $X_{(n)}$, the maximum number observed, is $\leq K$. Show that the power of this test is increasing as N moves away from M. Consider two cases: with and without replacement.

Q4. [12 points]
The pdf of a random vector X has the form $f(x \mid \theta)=C(\theta) h(x) e^{\theta T(x)}$ for x in R^{p}.
(a) Show that for a monotone increasing function $\psi(T)$ in $T, E[\psi(T) \mid \theta]$ is monotone increasing in θ.
(b) Use (a) to derive a UMP test for $H_{0}: \theta \leq \theta_{0}$ versus $H_{1}: \theta>\theta_{0}$. Describe the test procedure completely and show that its power is increasing in θ.

Q5. [16 points] X_{1}, \cdots, X_{n} are iid $N(\theta, 1)$. Define $\psi(\theta)=P\left[N\left(\theta, \frac{1}{k}\right)>c\right]$ for some $c>0$ and $1<k<n$. Derive the UMVUE of $\psi(\theta)$ and compute its efficiency compared to RCLB.

Q6. [12 points]
(a) Prove that a statistic $T(X)$ is UMVUE of some θ if and only if $T(X)$ is uncorrelated with every unbiased estimate of 0 .
(b) Hence show that if $T_{i}(X)$ is UMVUE of $g_{i}(\theta), i=1, \cdots, k$, then $\sum_{i=1}^{k} c_{i} T_{i}(X)$ is UMVUE of $\sum_{i=1}^{k} c_{i} g_{i}(\theta)$.

Q7. [12 points]
$X \sim B(n, \theta)$ and $\theta \sim \operatorname{Beta}(\alpha, \beta)$. Derive the Bayes estimate of $\phi(\theta)=\theta^{r}(1-\theta)^{s}$ under squared error loss. For $r=s=1$, compute its mean. Can it be unbiased for this case?

Q8. [12 points]
$X_{1}, \cdots, X_{2 n+1}$ are iid according to $f(x)=\frac{1}{2} e^{-|x-\theta|}$, both x and θ being real. Derive the MLE of θ and its distribution. Prove that the MLE is an unbiased estimate of θ.

