Comprehensive Examination

Statistics 653 - Basic Probability

100 points

August 23, 2022 (9:30 am-1:00 pm)

Name: _____

- You can use only calculator, but not cell phone
- You **must** show all proof details/calculations which lead to the answer

$\mathbf{Q}1.$ [12 points]

 X_1, \dots, X_n are iid with $f(x|\theta) = \theta x^{\theta-1}$ 0 < x < 1 and $\theta > 0$. Derive the MLE $\hat{\theta}$ of θ and compute its asymptotic variance. Does it attain the RCLB? If not, compute its efficiency.

Q2. [12 points]

- X_1, \cdots, X_n are iid $U\left[\theta \frac{1}{2}, \theta + \frac{1}{2}\right]$.
- (a) Prove that the MLE of θ is *not* unique.
- (b) Suggest an MLE of θ which is also unbiased and compute its variance.

Q3. [12 points]

A box contains N balls marked $1, \dots, N$. In order to test $H_0 : N = M$ versus $H_1 : N < M, n$ balls are randomly drawn from the box, and a test procedure rejects H_0 if $X_{(n)}$, the maximum number observed, is $\leq K$. Show that the power of this test is increasing as N moves away from M. Consider two cases: with and without replacement.

Q4. [12 points]

The pdf of a random vector X has the form $f(x|\theta) = C(\theta)h(x)e^{\theta T(x)}$ for x in \mathbb{R}^p .

- (a) Show that for a monotone increasing function $\psi(T)$ in T, $E[\psi(T)|\theta]$ is monotone increasing in θ .
- (b) Use (a) to derive a UMP test for $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Describe the test procedure completely and show that its power is increasing in θ .

Q5. [16 points] X_1, \dots, X_n are iid $N(\theta, 1)$. Define $\psi(\theta) = P\left[N\left(\theta, \frac{1}{k}\right) > c\right]$ for some c > 0 and 1 < k < n. Derive the UMVUE of $\psi(\theta)$ and compute its efficiency compared to RCLB.

Q6. [12 points]

- (a) Prove that a statistic T(X) is UMVUE of some θ if and only if T(X) is uncorrelated with every unbiased estimate of 0.
- (b) Hence show that if $T_i(X)$ is UMVUE of $g_i(\theta)$, $i = 1, \dots, k$, then $\sum_{i=1}^k c_i T_i(X)$ is UMVUE of $\sum_{i=1}^k c_i g_i(\theta)$.
- **Q**7. [12 points]

 $X \sim B(n,\theta)$ and $\theta \sim Beta(\alpha,\beta)$. Derive the Bayes estimate of $\phi(\theta) = \theta^r (1-\theta)^s$ under squared error loss. For r = s = 1, compute its mean. Can it be unbiased for this case?

Q8. [12 points]

 X_1, \dots, X_{2n+1} are iid according to $f(x) = \frac{1}{2}e^{-|x-\theta|}$, both x and θ being real. Derive the MLE of θ and its distribution. Prove that the MLE is an unbiased estimate of θ .