Comprehensive Examination
 Statistics 651 - Basic Probability
 100 points

August 22, 2022 (9:30 am-1:00 pm)

Name: \qquad

- You can use only calculator, but not cell phone
- You must show all proof details/calculations which lead to the answer

Q1. [12 points]
There are only two kinds of buses at your place, Number 1 and 2. Arrivals of the Number 1 bus form a Poisson distribution of rate 1 bus per hour, and arrivals of the Number 2 bus form an independent Poisson distribution of rate 7 buses per hour. What is the probability that exactly 4 buses pass by in 1 hour ?

Q2. [12 points]
A coin with probability $2 / 3$ of Heads is flipped repeatedly. The sequence of outcomes can be divided into runs (blocks of H's or blocks of T's) [for example, if the first 13 outcomes are HHHTTTTHTTTHH....., then it becomes HHH, TTTT, H, TTT, HH, which has 5 runs, with lengths $3,4,1,3,2$, respectively]. Find the expected length of the first run.

Q3. [12 points]
Twelve players on a basketball team consist of 3 centers, 4 forwards, and 5 backcourt players. The players are paired up at random into four groups of size 3 each (triplet). Find the variance value of the number of triplets consisting of one of each type of player.

Q4. [8+8 points]
Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent exponential random variables with rate parameter 1.
(a) Prove that for any $t \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} P\left(X_{(n)}-\ln (n) \leq t\right)=e^{-e^{-t}} .
$$

(b) Suppose that for any $t \in \mathbb{R}, P(Y \leq t)=e^{-e^{-t}}$. Find a close-form expression of $E(Y)$ (you can use part (a) if needed).

Q5. [12 points]
For random variables X and Y with the finite $\operatorname{Var}(X+Y), \operatorname{Var}(X), \operatorname{Var}(Y)$, show that

$$
\sqrt{\operatorname{Var}(X+Y)} \leq \sqrt{\operatorname{Var}(X)}+\sqrt{\operatorname{Var}(Y)} .
$$

Q6. [12 points]
Let U and V be independent variables with the $\chi_{(r)}^{2}$ and $\chi_{(s)}^{2}$ distributions respectively. Set $F=\frac{U / r}{V / s}$. Compute $E(F)$. What are conditions on r and s such that $E(F)$ is finite?

Q7. [12 points]
Suppose that $X \sim N(0,1)$ and $Y \sim N(0,1)$ are independent random variables. Define $U=Y+X$ and $V=Y-X$. Find $P\left(V^{4}<U^{4}\right)$.

Q8. [12 points]
Let $X_{(i)}, i=1, \ldots, n$, denote the order statistics from a set of n continuous uniform $[0,1]$ random variables. Which value of i minimizes, and which value maximizes, $\operatorname{Var}\left(X_{(i)}\right)$?

