MASTER'S COMPREHENSIVE EXAM IN Math 600-REAL ANALYSIS January 2018

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

- Q1 Let $A \in \mathbb{R}^{m \times n}$ be a matrix. For any sets $\mathcal{S}, \mathcal{U} \subseteq \mathbb{R}^n$, define $A\mathcal{S} := \{Ax \mid x \in \mathcal{S}\}$ and $\mathcal{S} + \mathcal{U} := \{x + y \mid x \in \mathcal{S}, y \in \mathcal{U}\}$. Let \mathcal{V} be a subspace of \mathbb{R}^n , and \mathcal{C} be a compact set in \mathbb{R}^n . You may use the facts that a subspace of the Euclidean space is closed and that a linear mapping is continuous without proof.
 - (a) Show that AV is a closed set and AC is a compact set.
 - (b) Use (a) to show that AV + AC is closed.
 - (c) Suppose C is path connected. Show that AV + AC is path connected.
- Q2 Let (f_n) be a sequence of real-valued functions that converges uniformly to f_* on a set $A \subseteq \mathbb{R}$, where each f_n is bounded on A, i.e., there exists $M_n > 0$ such that $|f_n(x)| \leq M_n$ for all $x \in A$.
 - (a) Show that f_* is bounded on A.
 - (b) Show that there exists M>0 such that $|f_n(x)|\leq M$ for all $x\in A$ and all n.
 - (c) Let (a_n) be a bounded real sequence, and denote by $a_n f_n$ the product of a_n and f_n . Show that $(a_n f_n)$ has a subsequence which converges uniformly on A.
- Q3 Let $f_n: \mathbb{R} \to \mathbb{R}$ be $f_n(x) = \frac{x}{n^r + x^2}$ with r > 1, and consider the series $s_* := \sum_{n=1}^{\infty} f_n$.
 - (a) Let $1 < r \le 2$. Show that the series converges uniformly on any bounded set $A \subseteq \mathbb{R}$ and that s_* is continuous at any point in \mathbb{R} .
 - (b) Let r > 2. Show that the series converges uniformly on \mathbb{R} .
 - (c) Let $1 < r \le 2$. Show that the series does not converge uniformly on \mathbb{R} .
- Q4 (a) State the definition of a contraction map and state the contraction mapping theorem (also known as the Banach fixed point theorem).
 - (b) Let (M,d) be a compact metric space and for each $n \in \mathbb{N}$ let $f_n : M \to M$ be a contraction mapping. Further suppose that $f : M \to M$ and that (f_n) converges uniformly (on M) to f. Prove that f has a fixed point.
 - (c) Show via a counter example that in the previous question f need not have a unique fixed point. [HINT: Consider M = [0, 1]].
- Q5 (a) Provide the definition of the Frechet derivative of a map $F: V_1 \to V_2$ where $(V_i, \|.\|_i)$ are finite dimensional normed vector spaces.
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x) = x_1 x_2$$
 if $x_1 x_2 \in \mathbb{Q}$
 $f(x) = 0$ if $x_1 x_2 \notin \mathbb{Q}$.

Decide if f has a directional derivative along all $v \in \mathbb{R}^2$. Decide if f is Frechet differentiable at (0,0).