MASTER'S COMPREHENSIVE EXAM IN Math 600 -REAL ANALYSIS
 August 2019

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

Q1 In \mathbb{R}^{n} (with the usual metric), for elements $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, let $x * y=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)$. Also, for sets A and B in \mathbb{R}^{n}, let $A * B:=\{x * y: x \in A, y \in B\}$. Define functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(x):=x * x$ and $g(x, y):=x * y$. Prove the following statements:
(a) f and g are continuous.
(b) If A and B are two compact sets in \mathbb{R}^{n}, then so is the set $A * B$.
(c) If A and B are two connected sets in \mathbb{R}^{n}, then so is the set $A * B$.

Q2 State the contraction mapping theorem (also known as the Banach fixed-point theorem) by explicitly defining the term '(strict) contraction'.
Suppose (M, d) is a complete metric space and for each $n \in \mathbb{N}, T_{n}: M \rightarrow M$ is a (strict) contraction with contractivity coefficient ρ_{n} and fixed point x_{n}. Further suppose that (T_{n}) converges to $T: M \rightarrow M$ pointwise on M.
(a) Show that if $\left(\rho_{n}\right)$ converges to ρ and $\rho<1$, then T is also a (strict) contraction.
(b) Suppose that $\left(x_{n}\right)$ converges to x^{*}. Prove that x^{*} is a fixed point of T. (You may not assume that (ρ_{n}) is convergent).

Q3 Consider the space $C[0,1]$ of all continuous real valued functions on the interval $[0,1]$, equipped with the uniform metric.
(a) State a necessary and sufficient condition for a set in $C[0,1]$ to be compact.
(b) Suppose $\left\{a_{n}\right\}$ is a bounded sequence of real numbers. Show that the sequence $\left\{\sin \left(a_{n} x\right)\right\}$ has a subsequence that converges uniformly on $[0,1]$.
(c) Show that the sequence $\left\{e^{n x}\right\}$ does not have a subsequence that converges uniformly on $[0,1]$.

Q4 You are given the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2} x^{2}+n x}
$$

on the domain $x \in(0, \infty)$.
(a) Prove that the series converges uniformly on $[a, \infty)$ for all $a>0$.
(b) Explain why the sum is continuous on $(0, \infty)$.
(c) Discuss the differentiability of the sum on $(0, \infty)$.
(d) Does the series converge uniformly on $(0, \infty)$?

Q5 (a) Provide the definition of the Fréchet derivative of a map $F: V_{1} \rightarrow V_{2}$ where $\left(V_{i},\|\cdot\|_{i}\right)$ are finite dimensional normed vector spaces.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
& f(x, y)=\frac{x^{4}+y^{4}}{x^{2}+y^{2}}, \quad \text { if } y \text { is irrational, } \\
& f(x, y)=0, \quad \text { if } y \text { is rational. }
\end{aligned}
$$

i. Decide if f has directional derivatives at $(0,0)$ along all $v \in \mathbb{R}^{2}$.
ii. Decide if f is Fréchet differentiable at $(0,0)$.
iii. What is the largest subset of \mathbb{R}^{2} on which f is Fréchet differentiable?

