MASTER'S COMPREHENSIVE EXAM IN Math 600 -REAL ANALYSIS August 2019

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

- **Q1** In \mathbb{R}^n (with the usual metric), for elements $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$, let $x * y = (x_1y_1, x_2y_2, \dots, x_ny_n)$. Also, for sets A and B in \mathbb{R}^n , let $A * B := \{x * y : x \in A, y \in B\}$. Define functions $f : \mathbb{R}^n \to \mathbb{R}^n$ and $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ by f(x) := x * x and g(x, y) := x * y. Prove the following statements:
 - (a) f and g are continuous.
 - (b) If A and B are two compact sets in \mathbb{R}^n , then so is the set A * B.
 - (c) If A and B are two connected sets in \mathbb{R}^n , then so is the set A * B.
- **Q**2 State the *contraction mapping theorem* (also known as the *Banach fixed-point theorem*) by explicitly defining the term '(strict) contraction'.

Suppose (M, d) is a complete metric space and for each $n \in \mathbb{N}$, $T_n : M \to M$ is a (strict) contraction with contractivity coefficient ρ_n and fixed point x_n . Further suppose that (T_n) converges to $T: M \to M$ pointwise on M.

- (a) Show that if (ρ_n) converges to ρ and $\rho < 1$, then T is also a (strict) contraction.
- (b) Suppose that (x_n) converges to x^* . Prove that x^* is a fixed point of T. (You may **not** assume that (ρ_n) is convergent).
- **Q**3 Consider the space C[0,1] of all continuous real valued functions on the interval [0,1], equipped with the uniform metric.
 - (a) State a necessary and sufficient condition for a set in C[0,1] to be compact.
 - (b) Suppose $\{a_n\}$ is a bounded sequence of real numbers. Show that the sequence $\{\sin(a_n x)\}$ has a subsequence that converges uniformly on [0, 1].
 - (c) Show that the sequence $\{e^{nx}\}$ does not have a subsequence that converges uniformly on [0, 1].
- **Q**4 You are given the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 x^2 + nx}$$

on the domain $x \in (0, \infty)$.

- (a) Prove that the series converges uniformly on $[a, \infty)$ for all a > 0.
- (b) Explain why the sum is continuous on $(0, \infty)$.
- (c) Discuss the differentiability of the sum on $(0, \infty)$.
- (d) Does the series converge uniformly on $(0, \infty)$?

- **Q**5 (a) Provide the definition of the Fréchet derivative of a map $F: V_1 \to V_2$ where $(V_i, ||.||_i)$ are finite dimensional normed vector spaces.
 - (b) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \frac{x^4 + y^4}{x^2 + y^2}, \quad \text{if } y \text{ is irrational},$$
$$f(x,y) = 0, \quad \text{if } y \text{ is rational}.$$

- i. Decide if f has directional derivatives at (0,0) along all $v \in \mathbb{R}^2$.
- ii. Decide if f is Fréchet differentiable at (0,0).
- iii. What is the largest subset of \mathbb{R}^2 on which f is Fréchet differentiable?