MASTER'S COMPREHENSIVE EXAM IN
 Math 600 -REAL ANALYSIS
 January 2020

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

Q1 (a) Suppose (M, d) is a metric space where every open set is closed. Show that every real-valued function on M is continuous. [HINT: Consider single element sets.]
(b) Let (M, d) be a metric space and suppose that every real-valued function on M is continuous. Show that every open set in M is closed. [HINT: For every $x \in M$, consider the function $h_{x}: M \rightarrow \mathbb{R}$ defined by $h_{x}(y)=1$ if $y=x$ and $h_{x}(y)=0$ if $y \neq x$.]

Q2 In a metric space, provide the definitions of connected and arcwise (pathwise) connected sets. How are they related?
(a) Are \mathbb{R}^{n} and $\mathbb{R}^{n} \backslash\{0\}$ connected? arcwise connected? For your answers, provide simple justifications.
(b) On \mathbb{R}^{2}, consider the function $f(x, y)=\left(x^{2}+y^{2}\right) e^{\sin \left(x^{2}+y^{2}\right)}$. Show that the range of f is $[0, \infty)$.
(c) On $\mathbb{R}^{2} \backslash\{0\}$, consider the function $g(x, y)=\frac{e^{\sin \left(x^{2}+y^{2}\right)}}{x^{2}+y^{2}}$. Show that the range of g is $(0, \infty)$.

Q3 You are given the series

$$
\sum_{n=1}^{\infty} \exp \left(\frac{x^{2}}{n}-n x\right),
$$

where $x \in(0, \infty)$.
(a) Show that the series converges uniformly on $[a, b]$ for all $a, b>0$ with $a<b$.
(b) Explain why the sum is well defined and continuous on $(0, \infty)$.
(c) Show that the series does not converge uniformly on $(0, b]$ for any $b>0$.
(d) Show that the series does not converge uniformly on $[a, \infty)$ for any $a>0$.

Q4 Consider the space $C[0,1]$ consisting of continuous functions $f:[0,1] \rightarrow \mathbb{R}$, equipped with the sup-norm.
(a) State necessary and sufficient conditions for a subset $S \subset C[0,1]$ to be compact.
(b) Let $A \subset C[0,1]$ be defined by

$$
A=\{f \in C[0,1]|f(0)=0,|f(x)-f(y)| \leq|x-y| \forall x, y \in[0,1]\} .
$$

Show that A is compact.
(c) Let $B \subset C[0,1]$ be defined by

$$
B=\{f \in C[0,1] \mid 0 \leq f(x) \leq 1 \forall x \in[0,1]\} .
$$

Show that B is closed and bounded, but that B is not compact.

Q5 (a) Provide the definition of the Fréchet derivative of a map $F: V_{1} \rightarrow V_{2}$ where $\left(V_{i},\|\cdot\|_{i}\right)$ are finite dimensional normed vector spaces.
(b) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f(0)=0, g(0)=\lambda, f$ is differentiable at $0, f^{\prime}(0)=\mu$ and g is continuous at 0 .
Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $F(x, y)=f(x) g(y)$ for all $(x, y) \in \mathbb{R}^{2}$. Show that both partials $\frac{\partial F}{\partial x}(0,0)$ and $\frac{\partial F}{\partial y}(0,0)$ exist by computing.
Prove that F has directional derivatives along all directions at $(0,0)$.
Prove that F is Fréchet differentiable at $(0,0)$.

